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1. PROBLEMS OF STRENGTH OF MATERIALS 

 

1.1. The Object and the Problems of Strength of Materials – S1 

 

 Strength of Materials is a subject of general technical knowledge, located 

between the physical-mathematical sciences and the specialized subjects of 

engineering. It is a logical follow-up of the theoretical mechanics, a development 

thereof by introducing the mechanical and elastic properties of the materials into 

the calculations. 

Strength of materials aims to establish the methods and the procedures for 

calculating the stresses, strains and deformations that occur at different points 

on the mechanical members, when subjected to forces, as well as to establish and 

use the relations between the stresses and the section dimensions. 

 Solving the problems of strength of materials takes into account the following 

three aspects: 

 I. the static aspect which establishes, based on the laws of mechanics, the 

relations between the external forces and the stresses (internal forces) and 

respectively the relations between stresses and strains; 

II. the geometrical aspect, by which the deformations of a body under the 

action of the forces are analyzed; 

III. the physical aspect, by means of which the connection relations (laws) 

between forces and deformations, as well as the mechanical-elastic properties 

of the respective material are experimentally determined. 

 Strength of materials solves the following three categories of problems: 

a) verification problems, by means of which it is determined whether a 

certain dimensions mechanical member subjected to forces meets the 

strength, rigidity and stability conditions; 

b) problems of calculating the maximum applicable load, by which, 

knowing the material and its mechanical and elastic properties, the 
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dimensions and the stresses acting on the element, one can determine the 

value of the loads that it can withstand; 

c) dimensioning problems, through which the optimal dimensions of the 

designed parts are established. 

 Each of these problems is solved by a calculation of strength. This is based on 

two criteria: 

 I. the good functioning criterion, which means ensuring the designed part in 

terms of: 

  a) - strength; 

  b) - rigidity; 

  c) - stability. 

 II. the efficiency criterion, which makes sure that the designed part represents 

the most economical possible solution in terms of material and labor consumption. 

 A calculation of strength is considered appropriate when it meets the two criteria 

simultaneously. 

 

The good functioning criterion implies meeting the following conditions: - S2 

 a) Each mechanical member of an assembly must withstand all the loads that 

act on it during its entire operating life and therefore the strength condition 

is required first. For this purpose, the Strength of materials teaches how to 

choose the appropriate material, the shape of the most advantageous 

section and to establish the relations between the cross-section and the 

loads, so that at the maximum loads, the stresses that occur in the section of 

the respective mechanical member to be lower than those causing the fracture. 

b) The rigidity condition sets the limit values of the deformations of the 

mechanical member of an assembly during the maximum load in operation. 

Therefore, the Strength of materials establishes the relations between the 

cross-section of the body and the deformations that occur due to the action of 

the forces and they are used for the calculation of strength (verification, load 
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capacity calculation and dimensioning). The ability of the bodies to have 

small deformations when subjected to forces is called rigidity. 

c) The stability condition requires maintaining the initial equilibrium shape 

of the mechanical member under the action of forces. Often in practice there 

are cases when the dimensions of the mechanical member meet the conditions 

of strength and rigidity set for the maximum load, but, at lower forces, they 

lose the stability of the initial equilibrium shape. The phenomenon occurs by 

the sudden appearance of a very large deformation that can often lead to the 

fracture of the respective mechanical member and the destruction of the entire 

construction. 

 The classic example of the loss of stability of the equilibrium shape is the case 

of a long straight thin (slim) compressed beam. Subjected to small forces the beam 

retains its rectilinear shape. If the force increases up to a certain value, the beam 

suddenly bends, even breaks. The phenomenon is known as compression buckling 

or loss of stability, and the force at which the phenomenon occurred is called critical 

buckling force. 

 

1.2. Terminology 

Strength of Materials uses specific notions of other disciplines such as 

mathematics, physics, mechanics, materials technology, etc., but also symbols and 

notions of its own. 

 

1.3. Classification of Bodies in Strength of Materials – S3 

 

 Of all the properties of the mechanical members, in Strength of materials, only 

those characteristics necessary for the calculation of strength are maintained, ignoring 

the others. For this purpose the bodies are schematized in mathematical models that 

have certain mechanical and elastic properties. As a result, the bodies will fit into 

the following five models: wire, beam, membrane, plate and solid. Through these 
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models, Strength of materials schematizes, through a method of calculation, the 

numerous machinery parts and construction elements and, therefore, the calculation 

of strength is widely applied. 

 According to their geometry, the bodies are divided into three groups: 

 a) Medium fiber bodies, those with one size, namely length, much larger than 

the other two, width and thickness. They are defined by: 

  - the longitudinal axis - which can be straight, curved, broken line, etc. 

  - the cross section - which can be constant or variable along the longitudinal 

axis. 

 This category consists of: 

  - wires - which can be subjected only to tensile stress and practically show 

no strength to shear or compressive stress; 

- beams - which resist to both axial and cross section stresses. 

According to their destination and stress, the beams have different 

specific names: tensional bar - when they are tensioned, poles - when they are 

compressed, beams - when they are buckled, shafts – especially when they are 

subjected to torsion stress. 

A medium fiber or axis is the geometric place of the centers of gravity of 

the normal plane sections, on the axis of the beam (or wire), and a normal section is 

the plane section perpendicular to the axis. 

b) The median surface bodies have one of the dimensions, namely thickness, 

relatively small in relation to the other two - width and length. This group 

includes membranes and plates. 

- The membranes, which are very thin, do not withstand shear or 

compressive stresses, only tensile stress. 

- The plates, flat or curved, can also overtake shear and compressive 

stresses. Examples of plates are lids and walls of tanks, domes, floors, 

etc. and of membranes are tent cloth, damping membranes, etc. 
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 c) Solids or massive bodies, have dimensions which fit in the same size 

category. Examples: bearing balls and rollers, foundation blocks, etc. 

 The calculations of strength differ from one group to another, being very simple 

for wires and straight beams, increasing in complexity for curved beams and frames, 

and becoming particularly complicated for plates and blocks. 

 Strength of materials shows the way of determining the stresses, strains and 

deformations in the simplest and most frequently used bodies and for this reason the 

fundamental and widely discussed topic of the course is the study of the straight 

beam, with a constant or variable cross section. 

 The model of a straight beam (fig. 1.1,a) is schematized in fig. 1.1 b. Thus, the 

model of the beam contains the axis of the beam of length L drawn with a thick line 

in the figure and the cross-section, rectangular in this case, of width b and height h.  

 The axis system attached to the model is a straight triple orthogonal system 

with Ox- the axis of the beam and the yOz system, the main central axes of the 

section. 

 As a whole, all these models can be called mechanical members. Further on, 

the MM symbol will be used for the general notion of mechanical member in the 

singular form and (MM) for the plural form. 
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Fig. 1.1. 

 

1.4. Basic Hypotheses of Strength of Materials - S4 

 To be able to establish the simple calculation relations, in Strength of materials 

certain hypotheses are used referring, both to the structure of the materials and to 

their behavior under the action of the applied loads. These hypotheses are sometimes 

consistent with reality, and, at other times, they represent simplifications of real 

phenomena, which lead to experimentally verified and therefore acceptable results, 

intended for the strength of materials. A primary hypothesis was the schematization 

of the bodies in wires, beams, membranes, plates and solids. 

 The basic hypotheses of the strength of materials are the following: 

 I. The hypothesis of the continuous environment, by which it is admitted that 

the MM material is considered to be a continuous environment that occupies the 

entire space delimited by its volume. This assumption corresponds satisfactorily to 

the amorphous materials, but does not correspond to the reality of the crystalline 

ones. The assumption is necessary because the dimensions in the strength of 

materials, such as stresses, displacements, strains, etc. can be written as locally 
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continuous functions and not as meshing functions specific to each crystal or particle, 

allowing the use of calculation and of mathematical analysis methods. 

 II. The hypothesis of the homogeneous environment, which admits that the 

MM material has the same physical dimensions at all points in its volume. Nor 

does this assumption fully agree with reality, especially in the case of concrete, wood 

or even metals. Thus, hard crusts and mechanical properties different from that of the 

core are created in metals through various thermal or mechanical treatments. 

III. The Hypothesis of the Isotropy. Materials are considered to be isotropic 

when they have the same elastic properties E, G and  in all directions. 

Otherwise, the materials are considered to be anisotropic. In Strength of materials, 

all materials are considered isotropic. 

IV. The Hypothesis of the perfect elasticity. If the stresses do not exceed 

certain limit values, the materials used by the engineers are considered to be 

perfectly elastic. This means that the deformations produced by the loads are 

canceled with the cancellation of the loads. 

V. The hypothesis of the proportionality between stresses and strains. 

Related to the field of elasticity stresses, it is considered that there is a linear relation 

between stresses and strains, i.e. Hooke's law is valid. 

VI. The hypothesis of small displacement. With some exceptions, in Strength 

of materials it is considered that the deformations of the MM are very small 

compared to its dimensions. The assumption is very important because the static 

equilibrium equations can be written by relating the forces to the initial non-

deformed state of the MM. Also based on this assumption, in the analytical 

calculations, the terms containing strains or displacements at higher powers can 

be neglected in relation to the terms at the first power (the first-order theory). 

VII. The hypothesis of the proportionality between strains and 

displacements. In the elastic field it is considered that there is a linear relation 

between strains and displacements. This assumption is a consequence of the 

assumption of small deformations. 
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VIII. The hypothesis of plane cross-sections (Bernoulli). The plane and 

normal sections on the axis of the beam remain planar and normal even 

after the deformation caused by loads. This assumption is experimentally 

verified on the outline of the beams and it is also validated inside them. 

 Thus, in the case of the beam in figure 1.2-a, subjected to tensile stress, the 

section BC is displaced to B'C' but remains flat and normal on the axis of the 

beam. The same happens with the beam in figure 1.2-b subjected to bending 

stress, where the section BC displaces and rotates in position B'C', but 

remains flat and normal on the axis of the beam. 

IX. Saint-Venant’s principle. If the forces acting on a small portion of the 

MM are replaced with another force system that is statically equivalent 

to the first, the new distribution of forces produces considerable 

differences on the place of application as compared to the first but have 

no effects or an insignificant effect at great distances from the place of 

force application. 

X.  The Principle of overlapping effects. By applying a load on an MM up to 

the prescribed limit of the proportionality of the material, the stresses, 

strains, deformations and displacements that occur in the MM depend 

exclusively on the size of that load and are not influenced by the effects of 

 

Fig. 1.2 
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other previously or simultaneously applied loads. This principle is a 

consequence of Hooke's law (strains are proportional to loads) and the 

assumption of the small deformations indicating the first-order theory. 

 

1.5. Safety in Operation. Safety Coefficients. 

Allowable Strength. – S5 

 In solving the problems of strength of materials, certain conditions may be 

imposed on the dimensioned or verified (MM), which will ensure their good 

functioning throughout their operating life. These conditions are: 

a) strength conditions; 

b) rigidity conditions; 

c) stability conditions. 

 

1.5.1. Strength conditions 

 

 We consider that an MM is appropriate in terms of its strength conditions, when 

the stresses that occur in it due to the loads do not exceed certain limits, 

conventionally established but correlated with the mechanical properties of the 

material from which the MM is made. 

 The conventional value chosen in calculation, from practice, for the 

maximum stress that can be produced in a part, under given material and load 

conditions is called allowable strength. 

 Depending on the deformations that occur, up to fracture, the materials are 

divided into two groups: 
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- ductile, which deform a lot before fracturing (e.g. low and medium strength 

steels); 

- brittle, which do not 

deform or deform very 

little, without rupture 

constriction before 

fracturing (example: cast 

iron, glass, high strength 

steel, etc.). 

The allowable strength can be 

defined compared to a limit 

state as hazardous and must be 

avoided. 

 In the case of ductile 

materials, which have the flow limit c, the allowable strength is defined by the 

relation: 

 


a

c

cc
                  (1.1a) 

 where: cc  is the safety coefficient in relation to the flow limit.  

 By choosing a correct safety coefficient in the calculations, reaching the flow 

limit will be avoided, therefore large deformations, which can put the part out of 

operation, will not occur. 

 For brittle materials, the allowable strength is defined according to the fracture 

strength r: 

 


a

r

rc
               (1.1b) 

 where: cr  is the safety coefficient in relation to the fracture strength. 

 The tests conducted on different (MM) showed which should be the most 

suitable values of the safety coefficients and therefore of the allowable strengths. For 
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example, if we refer to steel, the allowable strength must be lower than the flow limit 

but also than the elasticity and proportionality limits. 

 When choosing the safety coefficient c we have to take into account the 

following factors: 

a) the nature of the material and the manufacturing technology. Each 

material has certain mechanical properties that determine the allowable 

strength a. The more non-homogenous the material is, the higher the safety 

coefficient. Thus, the safety coefficient for cast iron is higher than for steel, 

and the safety coefficient for concrete or wood is higher than for metals. The 

uneven structure of the material, the existence of molding, forging or rolling 

crusts are technological factors that have a negative effect on the allowable 

strength and therefore a higher safety coefficient will be considered. 

b) The type of load. The performed mechanical tests (tension, compression, 

bending, etc.) have proven that the materials have different mechanical 

properties depending on how the stress is applied. However, some materials 

have equal allowable strengths for different stresses, for example, steel for 

tension, compression, bending. 

c) The action of stresses over time. When a MM is stressed with static loads, 

the safety coefficient is lower than for time-varying loads or for shock 

loadings. It has been experimentally observed that a material with a fracture 

strength r, subjected to time-varying stresses over time fractures at values 


max

 lower than 
r
. This phenomenon was given the name of material 

fatigue. The upper limit value of max, where the material endures a very 

large number of cycles (e.g. 5  10
7
 to 10

8
 cycles) without fracturing, is called 

fatigue strength. 

d) The way of evaluating the loads and applying the calculation 

assumptions. Less precisely the loads are evaluated, the more the 

assumptions and the calculation schemes are approximated, the lower the 

allowable strengths and the higher the safety coefficients. 
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e) The operating life of the part. For parts with short operating life, lower 

safety coefficients, thus higher allowable strengths, can be calculated. 

f) Temperature. High or low temperatures adversely affect the allowable 

strengths. For important (MM) that will operate at high or low temperatures, 

the allowable strength is chosen according to the mechanical properties at that 

temperature. 

 

1.5.2. Rigidity conditions 

 

 The operation of parts is possible only when their deformations do not exceed 

certain limits. For example, a shaft with large bending deformations causes premature 

bearing wear. For this reason, when calculating strength, certain limits are imposed 

for the size of the deformations and it is considered that the MM must meet certain 

rigidity conditions. 

 

1.5.3. Stability Conditions 

 

 Related to the problems of elastic stability, although the strength conditions are 

met, at certain values of the loads, called critical values, the parts can lose their 

standing balance, which leads to their destruction. These (MM) must meet the 

stability conditions, that is, the loads applied must be lower than the critical ones. 

 Some indicative values of the allowable strengths are given in Annex 1. This 

table shows that the admissible bending strengths are usually 10-20% higher than the 

tensile strengths, while the shear and torsion strengths are 60-80% of the tensile ones. 

An exception to this rule is cast iron, which has allowable compressive strengths 2 to 

5 times greater than the tensile strength. 
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2. EXTERNAL FORCES AND INTERNAL FORCES 

 

2.1. External Forces. Classification. - S6 

 

 The engineering constructions are made of one or more (MM). In Strength of 

materials, each MM or subassembly is analyzed only in the state of equilibrium 

under the action of the external forces. 

In Strength of materials the notion of external force includes both the forces 

applied on the MM surface and those distributed throughout the mass of the 

material such as: weight, inertial loads, electromagnetic forces, forces due to arrested  

expansion, etc., as well as the bonding forces between (MM) called reactions. 

External forces can be classified as follows: 

a) according to their nature: 

- active loads or forces; 

- reactions or bonding forces. 

b) according to the place of application: 

- surface or border forces, applied outside the MM; 

- volume or mass forces, distributed throughout the volume of the MM. 

c) according to the size of the surface on which they are applied, the surface 

forces may be: 

- concentrated, which are applied punctually and are a schematization 

of the forces distributed over a very small surface, in relation to the 

surface of the (MM); 

- distributed, which are uniformly or variably distributed on a surface 

or along a line. 

       The concentrated forces are measured in N, kN, MN, etc, while those distributed 

on the surface are measured in N/m
2
 or Pa, N/mm

2 
or MPa, kN/m

2
, etc. and those 

distributed along a line in N/m, kN/m, etc. 

 The forces applied on (MM) can be classified as follows: 
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a) According to their origin: 

- permanent loads, which maintain their intensity constant (example: 

the dead load of the MM); 

- live loads consisting inv those resulting from the functional role of the 

MM (examples: the weight of vehicles for a bridge, the payload for the 

means of transportation, the cutting force for tools, etc.); 

- accessory loads that occur during operation (examples: inertia forces, 

frictional forces, arrested expansion, etc.); 

- accidental loads, acting intermittently and irregularly (examples: the 

action of the wind, the weight of the snow, etc.); 

- extraordinary loads, which act accidentally, but can have a 

catastrophic effect (examples: fires, explosions, floods, earthquakes, etc). 

The permanent, live and accessory loads are called fundamental loads. 

b) According to the behavior over time, they can be classified into: 

- static loads, which apply slowly, and then maintain their intensity 

constant; 

- dynamic loads, which are applied with relatively high variable speed 

and which can be: 

- suddenly applied loads, producing shocks; 

- time-varying loads whose intensity varies periodically 

according to a certain law. 

c) According to the position of the load on MM: 

- static load, acting in the same place for the entire operating life of the 

construction (example: the dead load); 

- dynamic load, whose position is variable (example: the weight of a 

vehicle on a bridge). 
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2.2. Reactions – S7 

 

 Reactions or bonding forces are the mechanical action of the connections 

between the MM and other (MM) and occur under the action of loads on the MM. 

The bonds cancel one or more degrees of freedom of the MM, restricting its 

movements. According to the axiom of connections, the effect of bonding an MM, 

subjected to loads, can always be replaced by appropriate reactions (bonding 

forces), which are determined by the equilibrium conditions. When the number of 

distinct equilibrium equations equals that of the MM reactions, we have a 

determined static system, and when the number of the equilibrium equations is 

smaller than the number of reactions, we consider the system to be statically 

indeterminate. The degree of indeterminacy is given by the difference between the 

number of reactions and the number of equilibrium equations. The indeterminacy is 

solved in Strength of materials by introducing the geometric deformation 

conditions. 

Unlike theoretical mechanics, in Strength of materials, the forces are vectors 

connected to the point of application. Changing the point of application of the 

force does not change the equilibrium, but it can change the stresses occurring 

in the MM. 

 

2.3. Internal Forces – S8 

 

 Internal forces or stresses occur within the MM when it is loaded by external 

forces. In order to determine the stresses, Strength of materials uses Cauchy’s 

method of sections. This method is equivalent to the general equilibrium theorem: if 

an MM is in equilibrium under the action of a system of forces, then any part of 

this body is also in equilibrium under the action of the forces corresponding to 

that part. 

This method consists of: 
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- the imaginary sectioning of the MM, where the corresponding internal forces 

(stresses) are to be determined; 

- the representation, on the obtained MM sections, of the external and internal 

forces; 

- writing the equilibrium equations for the external loads and the stresses 

represented for one of the parts of the sectioned MM. 

We consider an arbitrary beam subjected to a system of forces F
1
, F

2
...F

n
 

(figure 2.1-a), and sectioned by an imaginary plane Q, normal on the axis of the 

beam. Two parts are obtained through sectioning:  and . The two sides of the 

beam are balanced by the internal distributed forces p, which occur on the section 

side A (fig. 2.1, b). The forces distributed on the surface A of part  are reduced in 

the center of gravity O
2 

to a resultant force R
2
 and a resultant moment M

02
. At the 

same time, these are the effect of part  on part . Therefore, the forces p on the 

side A of part  are equivalent to the reduction torsor in 0
2
 of the forces acting on 

part  (fig.2.1c). 

Similarly, if part  is represented, the action of part  on part  is equivalent 

in O
1
, with the resultant R

1
and the resultant moment M

01
.  
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The influence of part  on part  is equal and contrary to the influence of part  on 

part  (according to the action-reaction principle) which leads to: 

 R R R1 2   and M M M01 02 0  . 

 The elements of the reduction torsor in the center of gravity of the section 

of the forces acting on the left side are equal and in the opposite direction with 

the elements of the reduction torsor, in the same point, of the forces acting on 

the right side. 

The elements R
1
, M

01
, and respectively R

2
, M

02
, that ensure the equilibrium 

of each part are called internal forces. 

 They are, at the same time, the resultant and respectively the resultant moment 

of the elementary internal forces that occur between the particles of the two parts 

under the action of the loads. By separating the two parts through an imaginary plane, 

the internal forces have been transferred into the category of external forces and 

considered as such. 

 

Fig. 2.1 
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By designing the elements of the reduction torsor in O, on the coordinate axes, 

six components are obtained: three forces: N, T
y
, T

z
 and three moments: M

t
, M

y
, M

z
 

(fig.2.1, d). The components N, T
y
, T

z
, M

t
, M

y
, M

z
 are called sectional stresses or 

section stresses and will be referred to as STRESSES. Each stress has a name, a 

corresponding displacement (deformation) and it causes a simple load on the beam. 

 The normal force or the axial force N (fig. 2.1, d), is equal to the algebraic 

sum, taken with changed sign, of the projections on the x-axis of all the forces on the 

left (or right, taken with the same sign) of the considered section: 

 N F Fx x   
1 2

.        (2.1) 

where 1 means that the forces on the left are considered, and 2, that the ones on the 

right are considered. 

 The normal force is considered to be positive when it causes a tensile stress, 

which elongates the beam and negative when it causes a compression stress, which 

shortens the beam. 

 The shearing force T
y
, respectively T

z
, is equal to the sum of the projections 

on the 0y and 0z axes, in the plane of the section, taken with a changed sign, of all the 

forces located to the left (or to the right with the same sign) of the considered section: 

 T F F T F Fy y y z z z      
21 21

; .   

 (2.2) 

 The shearing force T
y
 is positive if the section displaces in the opposite 

direction of the 0y axis, in plane x0y, and T
z
, in the opposite direction of the 0z axis. 

The shearing forces cause shear or shearing stress. 

 The bending moment M
z, and also M

y, is equal to the sum of the moments in 

relation to the 0z axis and the 0y axis of the plane of the section, of all the torques of 

forces and the moments of the forces, located to the left (or to the right taken with 

minus) of the considered section: 

 M M Mz z z   
1 2

 and M M My y y   
1 2

.   (2.3) 
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 The bending moments cause the bending stress. The deformation caused 

by the bending moment is the twisting of the section around the respective axis: 

M
z
, around the Oz axis and M

y
 around the Oy axis. Moment M

z
 is considered to be 

positive, when it compresses the upper fiber and elongates the lower one, and M
y
 

is positive when it compresses the fiber on the positive side of the Oz axis and 

elongates the fiber from the negative side (fig. 2.2). 

 The twisting moment M
t
 is equal to the algebraic sum of the moments of the 

forces and the torques located to the left of the section (or to the right taken with a 

minus sign) relative to the Ox axis: 

 M M Mt x x   
1 2

.        (2.4) 

 The torque is positive when the forces or the force couples on the left of the 

section rotate clockwise and those on the right counterclockwise. 

The simultaneous presence in the beam section of two or more stresses 

causes a compound stress in the beam. 

 In general, the stresses on the right side of the section are determined (O
2
yz in 

fig.2.3,d) and in this case the forces on the left side of the section decrease. When it is 

easier to decrease the forces on the right side, then the stresses on the left side are 

obtained, which have opposite signs than those determined in the first case. If the 

 

Fig. 2.2 
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forces on the left side of the section have been deduced and they must be related to 

the right side then their sign will be changed. 

It should be noted that the representation of the interaction, by forces applied in 

O, is a simple conventional representation of the complex phenomenon of interaction 

between the two parts, (fig.2.1, b). 

Note: It is easier to obtain the section stresses by doing the following: 

a) we establish in which part of the section there are fewer forces and only the 

forces in that part (left or right) are taken into consideration; 

b) each force in that part is decomposed according to the directions of the axes 

in the section; 

c) each component obtained from the forces is reduced in the center of gravity of 

the section; 

d) the projections of the forces and of the moments corresponding to each axis 

are summed, taking into account the rule of signs, and the following is obtained: 

- N = the sum of the projections of forces on the Ox axis; 

- T
y
 = the sum of the projections of forces on the Oy axis; 

- T
z
 = the sum of the projections of forces on the Oz axis; 

- M
y
 = the sum of the projections of the moments on the Oy axis; 

- M
z
 = the sum of the projections of the moments on the Oz axis; 

- M
t
 = sum of the projections of the moments on the Ox axis. 

 

2.4. Stress Functions 

 

 The stress values in the section (N, T
y
, T

z
, M

y
, M

z
, M

x
) vary along the beam, 

depending on the way they are applied and on the shape of the beam. One of the main 

problems when calculating strength is to know the values of the stresses of each cross 

section. Thus, the variation of each stress is expressed according to the coordinates of 

the axis points and a stress function is obtained. For a straight beam, which has the 

axis oriented on Ox, the stress functions are expressed depending on the x-coordinate 



Strength of Materials I 

21 
 

of the section: N = N(x); T
y = T

y
(x);... M

z = M
z
(x). 

 The variation of stresses along the axis of the beam, under the action of the 

static loads, can best be traced on the stress diagrams. These are graphical 

representations of the stress functions according to the coordinate of the "x" section 

on the axis of the beam. The stress diagram is obtained by drawing a thin line 

that connects the points that meet the requirements of the equation of that stress 

function. This is represented along a reference line, drawn with a thick line, 

parallel and equal in length to the axis of the beam. Thus, a diagram is drawn for 

each stress. 

 In practice, straight or plane curved beams are frequently encountered, which 

are loaded with forces contained in the beam’s longitudinal plane of symmetry. 

Figure (2.3,a) shows such a beam and the plane of the forces is marked xOy. The 

reactions and the stress have been determined in the section on the "x" coordinate of 

bearing 1. Figure (2.3, b) contains the respective beam on which the reactions and the 

internal stresses in the "x" coordinate section were represented. 

In this particular case the following stresses can be determined: 

a) the axial force, equal to the algebraic sum of the projections of the external 

forces applied on the left (or right) of the considered section on the axis of the 

beam; 

b) the shearing force, T = Ty, equal to the algebraic sum of the projections on 

the Oy axis of all the forces on the left (or right) of the considered section; 

c) the bending moment, M = M
z
, equal to the algebraic sum of the moments of 

the forces in relation to the axis of Oz, of all forces and moments located on 

the left (or right) of the considered section. 
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 Usually, for drawing the stress diagrams for loads contained in a single plane, 

the plane design in figure (2.3,d) is used. The sectional stresses, on the left and on the 

right of the section are represented as in figure 2.3,d. 

The sign rule for a plane stress is given in figure 2.4: 

 

Fig. 2.4 

 

 

 

Fig. 2.3 

 

Plane of Section 
Plane of stresses 
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 - the axial force N, is positive when it elongates the beam section (fig.2.6,a) 

and negative when it shortens it. 

- the shearing force T is positive when it tends to twist beam section 

clockwise (fig.2.4,b); 

- the bending moment M is considered positive when it twists the two 

lateral sides, bending the fibers, so that the upper fibers shorten and the lower 

ones elongate (fig. 2.4, c). 

 

2.5. Differential Relations between Loads and Stresses – S9 

 

Drawing the stress diagrams can be much easier if both the stress functions 

and the differential relations between the stresses and different loads are known. 

In order to establish the differential relations between the loads and the 

stresses, a straight plane beam subjected to a system of loads contained in the plane 

of the beam axis is taken into consideration. The beam section is considered to be of 

infinitely small length dx, (fig.2.5,a). 

 
a)                Fig. 2.5   b) 

 

The following loads act upon element dx: 

- p, uniformly distributed along the dx length of the element; 

- T and M concentrated and acting in the section passing through point 0. 

Also in figure (2.5,b) stresses: T, M were represented in section O and 

respectively T+T and M+M in section A. According to (Cauchy’s) method of 
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sections, if the initial element is in equilibrium, then a portion of element of length dx 

will have to be in equilibrium. In this case, the following equations can be written: 

    0pdxPTTT;0Y        (2.5) 

      0M
2

dx
dxpdxTTMMM;0M eO  

 If the products of the small infinities are omitted, the relations (2.5) become: 

 .0;0  eMdxrTMdxpPT      (2.6) 

 These relations contain finite and infinitely small quantity terms. If the 

infinitely small terms are neglected compared to the finite terms, the following 

equations are obtained: 

 
eMM         ,PT               (2.7) 

 Neglecting the infinitely small terms can be done (and should be done) only in 

the vicinity of the point loads. From relations (2.7) it follows: in the vicinity of a 

point load, at least one stress proves a rise equal to the value of the component of 

the point load in the respective direction. For example, in the vicinity of a 

transverse point force Y, in the shearing forces diagram, there must be a rise equal to 

the value of component Y, and in the vicinity of a point moment Me, in the bending 

moments diagram, there is a rise equal to the value of moment Me. 

 In case there are no point loads (Y = 0 and M
e
 = 0) applied on element dx, 

then the relations (2.7) must contain only the infinitely small terms. Therefore, the 

variation of the stresses must be infinitely small, so it is considered: 

 .dMM              ,dTT       

 Taking the relations in (2.6) into account, the following is obtained: 

 .T
dx

dM
         ,p

dx

dT
              (2.8) 

 These relations lead to the following: 

 - by deriving the expression of the bending moment in relation to the "x" 

variable, the expression of the shearing force is obtained; 

- by deriving the expression of the shearing force in relation to the "x" 

variable, the expression of the distributed load p with a negative sign is obtained. 
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 By deriving the first relation again and taking into account the second, the 

following is obtained: 

 p
dx

dT

dx

Md
2

2

 .         (2.10) 

 Notes: 

a) Relations (2.8), (2.9) and (2.10) are differential relations of the stress 

functions N(x), T(x) and M(x). The stress diagrams represent the integrals of 

these expressions. 

b) Relation (2.10) shows that the equation of the shearing force can be obtained, 

either by integrating the expression of the load or by deriving the expression 

of the bending moment. 

 

Fig. 2.8 

 

c) If the loads are contained in the xOy plane (fig.2.8), the equilibrium 

equations are: 

 

  0dMM
2

dx
dxpdxTM

,0dTTdxpT

YYZZY

ZZZZ





 

Thus, the following is obtained: 

z
z

z

y
p

dx

dT
        ,T

dx

dM
 ,    (2.11, a) 

z
z

2

Y
2

p
dx

T

dx

Md
 .     (2.11, b) 
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2.6. Practical Rules for Drawing the Stress Diagrams – S 10 

 

 In the case when the transverse forces are zero (Y= 0; p= 0), relations (2.10) 

lead to: 

 T C M C x Ci   1 1 2, .  (2.12) 

 Therefore, when the transverse forces are zero, the shearing force is 

constant and the bending moment varies linearly (fig. 2.9, a and b). C
1
 and C

2
 are 

integration constants and represent the shearing force, respectively the bending 

moment, at the left or right boundary of the considered section. 

 
Fig. 2.9 

 

 If a uniformly distributed transverse force (p = ct.) is applied on a beam 

section, then the relations (2.10) lead to: 

T C p x  1 1    (linear variation), 

M C C x p x    2 2

2
  (parabolic variation).     (2.13) 

 For this case, several modes of variation of the shearing force and of the 

bending moment have been represented on a beam section (fig.2.10). 

The second relation (2.10) shows that the shearing force is equal to the slope 

of the curve of the bending moments. 
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Figures 2.9 and 2.10 show that on the section where: 

 

 

.        0

,         

,        0

,        0

minmax

ctMT

MorMzerohgoesthrougT

decreasesMT

increasesMT









     (2.14) 

 If we consider relations (2.7), when there are point loads present, it results that 

a sudden change of the slope of the bending moment corresponds to a sudden 

variation of the shearing force. Hence, there is a point on the moment diagram 

where the slope of the tangent changes (it breaks) in the vicinity of the 

transverse point load. 

 

Fig. 2.10.a 
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Fig. 2.10.b 

 

 In addition to the above mentioned rules, it is necessary to take the following 

steps when drawing the stress diagrams: 

a) the beam is released from any connections, the reactions are represented and 

their value is determined from the equilibrium equations; 

b) a direction of the beam is chosen, that is, an origin of the Ox axis and its 

direction, which can be from left to right or from right to left, from top to 

bottom or from bottom to up, etc .; 

c) the stress functions are established, i.e. the expressions N(x), T(x) and M(x) 

for each beam section; 

d) for each existing stress, a thick reference line is drawn, parallel to the axis 

of the beam and of the same length therewith; 

e) the axial forces, the shearing forces and the positive twisting moments are 

represented on a scale above the reference line; the positive bending moments 

are drawn below the reference line; 

f) the representation of the stresses in the diagrams is made by drawing 

straight segments perpendicular to the reference line, which represent, at 

scale, the value of the respective stress. 
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2.7. Stress Diagrams – 11 a 

 

 Stress diagrams are necessary to determine the hazardous section and therefore 

they are always drawn for every loaded beam. One can immediately notice on the 

diagram the loads and the most loaded (hazardous) sections, as well as the limit 

values of the stresses. 

 

 

2.7.1. Straight beams acted upon by axial forces 

 

 In these cases the external forces acting along the beam are reduced to 

resultants whose support is precisely the axis of the beam. 

Exercise 2.1. Draw the stress diagram for a beam loaded as in Figure 2.11. 

 
Figure 2.11 

 

The stresses are the following: 

 N
1s

= 0; N
1d

= N
2s

= -5P; N
2d

= N
3s

= P;  N
3d

= N
4s

= 5P; N
4d

= N5s
= 3P; N5d

= 

N6s
= -P; N6d

= 0. 

 Exercise 2.2. A vertical pole loaded with the axial load P = 500 kN consists of 

two sections and rests on a concrete block. Both the pole with its two sections and the 

foundation have constant sections and the lengths of figure 2.12. The weight 

distributed along section 1-2 is q1= 25 kN/m, on section 2-3 it is q2= 35 kN/m, and 

the weight of the foundation is q3= 90 kN/m. Draw the stress diagrams. 
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Fig. 2.12 

 

 In an arbitrary section, on coordinate x
1
, the axial force is: 

N(x
1
)= - P- q1x 1

,   N
x1

= - 500 - 25x
1
, 

 therefore, it linearly varies. 

 The limit values are: 

N
1
= - 500 kN,   N

2
= - 500 - 253= - 575 kN. 

 In an arbitrary section on part 2-3, the axial force has the following expression: 

 N(x
2
)= - P- q

1
l

1
- q

2
x

2
, and the limit values will be: 

 N
2
= - 500 - 25 3=- 575 kN, N

3
= - 500 - 25 3 - 35 3 = - 680 kN 

 In a section on the foundation, the axial force is given by the expression: 

 N(x
3
) = - P - q

1
l

1
- q

2
l

2
- q3x3

, and the limit values are: 

 N
3
= -  500 - 253 - 353= - 680 kN, N

4
= - 500 - 25x3 - 35x3 - 90x2 = - 905 kN. 

 The variation diagram of the axial stresses is shown to the right of the beam. 
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2.7.2. Straight bar (beam) subjected to bending 

 

 To begin with, the straight bars subjected to vertical external forces located in 

one of the bar’s longitudinal symmetry planes will be considered. In this case, in the 

cross-sections of the bar, when subjected to loads, axial forces, shearing forces and 

bending moments occur. 

 

2.7.2.1. Cantilevers 

 

 Regarding the cantilevers (with a fixed end and a free end) the stress diagrams 

can be drawn even without previously calculating the reactions. In this case, the 

origin of the reference system is considered in the free end, and the reactions will be 

equal to the values of the stresses in the fixed end. 

 Exercise 2.3. Cantilever with a fixed end and subjected to a point load at the 

other (fig. 2.13). In figure (2.13, a), the cantilever has the free end on the right, while 

in figure (2.13, b), the free end is on the left. 

 
a)      b) 

Fig. 2.13 

 

 The stress functions for the cantilever in figure (2.13,a) are the following: 

 Tx = P = ct.  Mx = - Px (linearly varies) and has values M
0
= 0 and M

1
= - PL. 

 The stresses acting on the cantilever in figure (2.13,b) are:  

Tx = - P = ct.  Mx = - Px,      M
0 = 0 and M

1
= - PL. 
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 Note: The shearing forces have equal absolute values, but different signs. 

 Exercise 2.4 Cantilever 

subjected to a uniformly distributed 

transverse force (fig.2.14). 

 In section x the stresses are: 

  Tx = - px (straight line), 

Mx = - px(x/2) = - px2/2   (parabola), 

and the limit values become: 

 T
0
= 0;     T

1
= - pL;     M

0
= 0;     

M
1
= - pL2/2. 

 The reactions in the fixed end 

are: 

  V
1
= pL;     M1 = - pL2/2. 

 Exercise 2.5. Cantilever 

subjected to a linearly distributed load 

(fig. 2.15). 

 The load is determined by the 

maximum intensity of load p
0
. The 

total load on the bar is p = p
0
L/2 and 

the load intensity in an arbitrary 

section, at distance x from the end, is: 

 p p
x

L
  









0 1 .   The stresses 

in section x are:  

 

 T p p
x p x x

L
x      


 








0

0

2 2
2 ,

 

 

.3
6323

2

2

2

0
0 













L

xxpxx
p

xx
pM x

 

 
Fig. 2.15 

 
 

Fig. 2.14 
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 It is noted that the shearing force varies according to a 2
nd

 degree parabola, and 

the bending moment according to a 3
rd

 degree parabola. In the two ends of the 

cantilever the stresses will have the following values:  

 T
0
=0,    M

0
=0,    T

1
= - p

0
L/2,    M

1
= - p

0
L/3, 

and the reactions will be: 

 V p
L

1 0
2

  ,    M
p L

1
0

2

3
 


. 

Notes: 

a) The shearing force in an arbitrary section x is equal to the surface of the 

diagram of the forces distributed along Ox; 

b) The bending moment in a section x is the product between the resultant of the 

forces along Ox and the distance from section x to the resultant.  

 

2.7.2.2. Simply supported bar (beam)  

 

 The simply supported beam has a 

simple bearing at one end and a joint at the 

other. In the joint, two components of the 

reaction will be considered, namely V 

vertically and H horizontally. Only one 

reaction occurs in the simple bearing, namely 

a normal force on the bearing surface. 

The distance between the two bearings 

is L and is called the span of the beam. 

Exercise 2.6. Simply supported beam 

subjected to a point force Q acting obliquely 

(fig. 2.16).  

 Force Q is deconstructed into the 

following components: 

 
Fig. 2.16 
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 P = Qcos    and    H = Qsin. 

 The values of the reactions are: 

   H
2 = H = Qsin; V

1
= Pb/L and V

2 = Pa/L. 

 In an arbitrary section x, located on the left of load Q, the stresses are: 

   N
x
= 0; T

x
= V

1
= Pb/L; M

x
= V

1
x= Pbx/L. 

 The axial force and the shearing force have constant values, 

   N
1d

= 0; T1d= V
1
= Pb/L, 

   M
1
= 0;    M

3s
= Pab/L. 

 Considering the origin in 2 (starting from the right), the following stresses are 

obtained in section x1: 

 Nx1
= H

2
= Qsin; Tx1

= - Pa/L, 

 Mx1
= V

2
x

1
=  Pax

1
/L. 

 The stresses in sections 2 and 3 are: 

 N
2s

= N
3d

= Nx1
= Qsin; 

 T
2s

=T
3d

= V
2
= - Pa/L; 

 M
2
= 0;    M

3d
= Pab/L. 

  

Notes: 

a) The axial force has a constant value, other than zero between the joint and the 

point of application of the force Q. 

b) The shearing force has a constant value, equal to the value of the reaction V
1 

on section 1-3, it rises equally to the value of the vertical component P in 

the vicinity of force Q, and on section 3-2 it has a constant value, equal and 

of opposite direction than reaction V
2
. 

c)  The bending moment proves a linearly variation on both sections (where the 

shearing forces are constant) and it reaches the maximum value in the vicinity 

of the point force (where the shearing force passes through zero). 



Strength of Materials I 

35 
 

 Exercise 2.7. Simply supported beam, subjected to uniformly distributed 

transverse loads (fig.2.17). 

 As the loading is symmetrical, the reactions are: 

 V
1
= V

2
= p

1
L/2. 

 The stresses in a section x are: 

 Tx= V1- px = p  (L/2 - x), (linearly 

variable); 

 Mx= V
1
x - px(x/2 )= px(L - x)/2, 

(parabolically variable). 

 The values in the bearings are: 

 T
1
= V

1
= p L/2,   M

1
= 0, 

 T
2
= V

2
= - p L/2,   M

2
= 0. 

 At distance x
0
= L/2; T = 0 and 

therefore  

 M
max

= p L
2
/8. 

 Note: 

If we note P = p L, the load on the beam, it is observed that the maximum moment 

(M
max

= pL
2
/8) is half of the maximum moment 

produced by the point load P which would act 

in the middle of the beam, when M
max

= PL/4 

(see fig. 2.17). 

 Exercise 2.9. Simply supported beam 

subjected to a linearly variable transverse load 

(fig.2.18). 

 The reactions have the following values: 

 
.

33

2

2

1

,
632

1

2

1

LpLLp

L
V

LpLLp

L
V
















 

 
Fig. 2.17 

 
Fig. 2.18 
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 The value of the load in section x is: 

 
p p

x

L
x   .

 

 The stresses in section x are: 

 T V x p p
L

p
x

L
x x       1

21

2 6 2
, (2

nd
 degree parabola), 

 

M V x x p
x

p L
x

p
x

x

L

x
p

L x

L
x

x x      




      




1

2 2

1

2 3

6 2 3 6
,

 (3
rd

 degree parabola). 

 The stresses have the following values in the bearings: 

 T
max

= T
1
= V

1
= p L/6,       M

1
= 0,  T

min
= T

2
= - V

2
=- p L/3,     M

2= 0. 

 From this condition: 

 T
p L p x

L
x 







6 2
00

2

, 

results the coordinate of the section where the bending moment reaches the limit 

value:   L
L

x  5574.0
3

0 , 

and the maximum moment is: M p
L x

x
p L

max  


 
2

0

2

0

2

6 9 3
. 

 Exercise 2.10. Simply supported beam loaded by torque M
e
, (fig.2.19). 

 The reactions in the bearings are:  

 
V V

M

L

e
1 2  .

 

 The stresses in section x and x1 are: 

 
L

M
VTT e

XX  11
,  (constant), 

 M V x M
x

L
x e     1 ,(linear 

variation), 

 
Fig. 2.19 
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 M V x M
x

L
X e1 2 1

1    ,( linear variation). 

 The bending moment is zero in the bearings (x = 0 and x
1 

= 0) and reaches the 

limit values on the left and on the right of section 3 as follows: 

 M V a
a

L
Ms e3 1      ,  

 M V b
b

L
Md e3 2    . 

 In the vicinity of the torque, the bending moment diagram rises equally to the 

value of the torque M
e
: )       ( ee M

L

b
toM

L

a
from  . 

  

 

2.7.3. Stress diagrams in shafts 

 

 The shafts are bars loaded with forces whose directions do not pass through the 

axis of the bar, or subjected to force couples acting in planes perpendicular to the axis 

of the bar. The forces or the force couples are transmitted to the shafts through 

cogwheels, belt wheels, levers, couplings, etc. 

 The value of the twisting moment is calculated either depending to the distance 

between the force support and the shaft axis (force arm), or depending on the power 

and speed to be transmitted. 

 If a shaft transmits a power P
*
, measured in kW, at a speed measured in 

rotations/minute, then the torque moment results from the relation: 

 P M M
n

t t

    





30
,   so that: 

  
 

 
M kNm

P kW

n rot
t  


30

 / min
.       (2.16)  

If power is given in W, the torque moment results in Nm. When power is given 

in HP (horse power), the torque moment is obtained by using the following relation: 
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    
 min/

02.7
rotn

CPP
kNmM t



 .      (2.17) 

 The torque moment is considered to be positive when the twisting moment 

vector on the left has the direction of the Ox axis, or when it rotates the left section 

related to the section on the right end in the direction of the right drill. 

 Exercise 2.11. Draw the power and torque diagrams for a straight shaft (Figure 

2.20) that receives a power P* = 10 kW at speed n = 125 rpm through wheel (3) and 

transmits it like this: 

  - 25% on wheel (1),   - 30% on wheel (2),   - and the rest on wheel (4). 

 The power on the three sections are: 

 kWPP   5.225.021  

 ,   P P2 3 0 25 0 3 5 5

      , , ,   kW , 

  P P3 4 1 0 25 0 3 4 5

     , , ,   kW, 

 The variation of the power is shown in diagram P
*
 in figure 2.24. 

 The values of the torque on the three sections are: 

 ,  191.0
125

5.23030 21

21
kNm

n

P
M t 


 

 
 

 ,  42.0
125

5.53030 32

32
kNm

n

P
M t 


 

 
 

 .  344.0
125

5.43030 43

43
kNm

n

P
M t  

 
 

        The diagram of variation of the 

twisting moments Mt, is shown in fig. 

2.20. 

 Note: Taking power through 

the median wheel and transmitting it 

to the wheels located on both sides of 

the drive wheel is one of the most 

efficient ways of loading the shaft. In 

this way the power is distributed 

almost equally both on the left and on 

 
Fig. 2.20 
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the right of the drive wheel. If the drive wheel is at one of the ends of the shaft, the 

entire power of 10 kW acts in its vicinity, namely the entire twisting moment, M
t
= 

0.42 + 0.34 = 0.764 kNm. In this case, the shaft must be adjusted at an almost double 

twisting moment. 

 

 

3.  GENERAL NOTIONS ON THE THEORY OF ELASTICITY S12 

 

3.1. Introduction 

 

 In contrast to the Strength of materials, the Theory of elasticity aims to 

determine the state of stress and strain in a body with known elastic 

characteristics if either the external forces or the shape deformed under the 

action of these forces are known. 

 

3.2. Stresses 

 

 If an MM is subjected to the action of external forces, additional attraction or 

rejection forces will appear within it that tend to make it maintain its original shape. 

If these forces did not exist, the MM would not be able to withstand external loads. 

 

 
Fig. 3.1 
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 Let us take into consideration a beam, in equilibrium, subjected to a system of 

external forces (F1, F2,..., Fn) (fig. 3.1,a). The external forces tend to change the 

shape of the beam, whereas the internal forces put up an opposition against the 

deformation of the beam. 

Presumably, the beam had been sectioned by a Q plane, normal on the axis of 

the bar (Ox). An internal force R will act on each surface element A
x
 of the 

separation surface. All the forces R on the entire separation surface keep part I and 

part II connected to plane Q. The internal force R can be deconstructed into three 

components parallel to the axes Ox, Oy, and Oz: namely Nx  Ty   Tz. 

The strength of the inner force R may differ on the surface and may depend 

on the position of the area A. The intensity of the force on the area section A is 

equal to the ratio 




R

A
. If we reduce the finite area A to an infinitesimal area around 

a point, we obtain a new measure of intensity called stress. This is how the normal 

stress 
x
 is obtained: 

  x
A

x xN

A

dN

dA
 


lim




0
,         (3.1,a) 

and accordingly, the tangential stresses: 

  xy
A

y yT

A

dT

dA
 


lim




0
,   yz

A

z zT

A

dT

dA
 


lim




0
.    (3.1,b) 

        The normal stresses are positive if they cause elongation, and negative if they 

cause compression. 

The tangential stresses are produced by the forces contained in the Q plane of 

the section. They are considered to be positive when they rotate the volume 

element clockwise and respectively negative when the rotation is 

counterclockwise. 

        The stresses are measured in units of force per unit area Pa, MPa, GPa, 

N/mm2, kN/mm2, etc. 
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 The measures  and  are not vectors (because they are obtained from the 

ratio of elemental forces to an elemental surface), but they are tensor measurements 

and as such, care must be taken that the operating rules specific to tensors be applied. 

Normal stresses are marked with only one index - that of the normal axis 

to the section, while the tangential stresses are marked with two indices: the first 

index shows the normal axis to the section, and the second, the axis parallel to 

the stress. 

 

3.3. Stresses Acting upon a Volume Element 

 

 If an infinitesimal element is cut from the beam (fig.3.1) by means of 

imaginary planes parallel to planes zOy, zOx, xOy, where the distances between them 

are dx, dy, dz, an elemental parallelepiped is obtained (fig.3.2,a). 

 This is considered to be a point from the MM. Stresses 
x
, 

xy
 and 

yz
 

determined with the relations (3.1) will act on the left side of this element. The 

elemental forces on this side are the following: 

 

 

Fig. 3.2 
 

.dzdydAdT

,dzdydAdT

,dzdydAdN

xzxzz

xyxyy

xxx












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 In order to analyze the stresses, we start from the following assumption: the 

elemental forces acting on the two elemental areas, of an infinitely small 

element, that are parallel to each other are also equal and opposite, that is, if the 

elemental forces 
x
dA, 

xy
dA and 

xz
dA load the left side of the element, then the 

same elemental but opposite forces 
x
dA, 

xy
dA and 

xz
dA will act on the right side 

of the element, of the same area dA. It results that on the sides of the infinitesimal 

volume element the stresses will act as in figure (3.2,b). 

 The 9 components: 
x
, 

y
, 

z
, 

xy
, 

xy
, 

yx
, 

xz
, 

yz
, 

zy
, fully characterize the 

state of stress around an arbitrary point O. These are tensor measurements (different 

from the scalar and vector measurements) and are represented by the stress tensor. 

 


















zyzxz

zyyxy

zxyxx

T







 .        (3.2) 

 The stress tensor is a second order tensor, which contains the above-mentioned 

9 components on the 6 sides of the volume element. On each side of the volume 

element there are one component  parallel to the normal axis to the side and two 

components , contained in the plane of the section and parallel to the two axes of the 

section. 

The infinitesimal element subjected to the elemental forces is in equilibrium, 

and therefore the normal forces must be two by two collinear, equal in size and 

opposite, and the system of tangential forces must also be in equilibrium. Thus, the 

tangential forces (Ty) must be equal in size and opposite in direction, paired and the 

moment at the center of the element must be zero:  

 2
2

2
2

0          xy yxdy dz
dx

dx dz
dy

.  

 By simplifying with dxdydz, the following will result: 

  xy yx  . 

 If we set similar conditions for the stresses on the other sides, parallel to each 

other, from figure (3.2, b), we obtain the relations: 
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  xy yx ,    yz zy ,  and   zx xz .     (3.3) 

 These relations represent the duality of the tangential stresses and specify 

that: on the perpendicular sides of an infinitesimal element, the following 

tangential stresses 
xy

 and 
yx

 can exist simultaneously. They are contained in 

planes that correspond to the sides of the volume element and, in pairs, they 

cause couples of equal size and opposite direction. Therefore, they must be 

symmetrical to the common edge of the two sides. Relations (3.3) prove that out of 

the 9 components of tensor (3.2) only 6 are distinct and therefore the stress tensor is 

symmetrical to the main diagonal. 

 

3.4. Plane State of Stress. Variation of Stresses around a Point. 

 

 In many engineering problems, the particular case of the general state of stress 

is encountered, when the MM is loaded with coplanar forces in equilibrium, in this 

case on the unloaded surface, and there are no normal and parallel loads. Also, taking 

into account the equilibrium condition, the forces will be zero on a side which is 

parallel to the first and located at infinitely small distance (dz). In this case all the 

forces are coplanar and the corresponding state of stress is called a plane state of 

stress and it can be represented as in figure (3.3a,b). 

 

a) 
 

b) 

Fig. 3.3 
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 We take into consideration the infinitely small element in figure 3.4 under the 

form of a triangular prism, based on a rectangular triangle, cut from the volume 

element in figure (3.3,b) and subjected to components 
x
,  

y
 ,  

xy
= 

yx
. On the AC 

side, inclined with angle , the unknown stresses 
 and 


will occur. 

The BC side is considered to be of area dA, and the thickness of the element is 

constant. In this case, the area of the AC side is dAcos, and that of AB side is dA

sin. 

 

 From the equations of the projections of the elemental forces on directions 

 

and 

, from the equilibrium conditions of the element, the following are obtained: 

 
    

     

        

        

dA dA dA

dA dA

x y

xy xy

cos sin

cos sin sin cos

2 2

0
 

 
0sindAcosdA

cossindAsincosdAdA

2

xy

2

xy

yx








 

 By simplifying with dA and considering 

that 
xy = 

yx
 , the following results: 

 

              x y xycos sin sin cos
2 2

, 

 

                  x y xysin cos cos sin
2 2

. 

Taking into account that: 

 sin
cos2 1 2

2






,  cos

cos2 1 2

2






,  sin cos

sin
 


 

2

2
, 

the above expressions become: 

 
   

   





 
x y x y

xy
2 2

2 2cos sin ,    (3.4,a) 

 

Fig. 3.4 
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 
 

    


  
x y

xy
2

2 2sin cos .     (3.4,b) 

 These relations allow the determination of stresses on a surface inclined at 

angle . The normal to this surface makes angle  with axis Ox. The angle  can also 

be defined as the angle at which the Ox axis must be rotated in order to overlap the 

normal to the given inclined surface. 

 Angle  is considered to be positive when it rotates the Ox axis clockwise 

to the normal to the inclined surface and negative when it rotates it 

counterclockwise. 

 Relations (3.4) show that stresses 

 and 


 are circular functions of parameter 

2. Since it is necessary to know the maximum and minimum values of the stresses, 

the expressions (3.4,a) and (3.4,b) are derived in relation to parameter 2. The limit 

values of the stresses are obtained for the value of parameter   for which the 

derivative is canceled.  

 
d

d

x y

xy





 
  

( )
sin cos, ,

2 2
01 2 1 2 


     

 It is noted that the derivative of  is 

 and therefore on the sides where  

reaches limit values, the tangential stresses are null. 

 The planes on which the tangential stresses are null are called main planes and 

the normals to these planes are called main directions. 

The normal stresses on the main planes are called main stresses and therefore 

the main stresses are maximum or minimum stresses, on the planes where = 0, that 

is for: 

 tg
xy

x y

2
2

1 2


 
, 


, or  



 


1 2

1

2

2

2
,  


arctg

xy

x y

.   (3.5) 

 The above relations have two indices because the tangent function has the 

period  and thus there will be two solutions on a whole circle, namely 2
1
 and 2

2
, 

different by 180
o
 and therefore the directions 

1
 differ from 

2
 by 90

o
; that is, they 

are perpendicular to each other. 
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In order to obtain angle 
1
 the following relation can also be used: 

 


 
1

2




arctg
xy

x

.        (3.5,a) 

 Direction 
1
 is for the maximum stress 

1
 and direction 

2
 is for the minimum 

stress 
2
. 

 If we take the trigonometric relations into consideration in expressions (3.5), 

we get: 

 

2
xy

2

yx

xy

2,1
2

2,1

2,1

2

2tg1

2tg
2sin










 








 , 

 

2
xy

2

yx

yx

2,1
2

2,1

2

2

2tg1

1
2cos










 







 . 

 By replacing these expressions in expression (3.4,a), we get the expressions of 

the two main stresses: 

 
   

1 2

2

2

2 2
, 












 

x y x y

xy .     (3.6) 

 The maximum stress 
1
is obtained when the plus sign appears in front of the 

radical, while the minimum stress 
2
 is obtained when there is the minus sign. 

Doing the same with the second relation (3.4,b), by derivation with respect to 

parameter 2 and equalizing to zero, we obtain the values for which stress 

 reaches 

the limit: 

 
 
d

d

tg
tg

x y

xy

y x

xy





 
  


 

 



2 2
2 2 0

2

1

1 2 1 2

1 2

1 2

 


   





 

cos sin ,

.

,
.

,
,

,
,

,

   (3.7) 
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 From relation (3.7) results that directions 21,2 and 2
’
1,2 are perpendicular, 

so it follows that: the limit tangential stresses are on those sides of the element 

which differ by 45 from the sides on which the main normal stresses occur. 

 If we replace the parameter 2~
1,2

 in expressions (3.4), it results: 

 
     

m

x y
ct








1 2

2 2 2

  . ,    (3.8) 

 
   

1 2
1 2

2

2

2 2
, . 


 









 

x y

xy      (3.9) 

 Relation (3.8) shows that the sum of the normal stresses on two perpendicular 

sides is constant. 

 Relation (3.9) expresses the equality between the semi-difference of the main 

normal stresses with the maximum tangential stress and with the value below the 

radical in relation (3.6) and can be written: 

   1 2 1,  m .         (3.10) 

 On the sides inclined at 45 to the main planes, extreme tangential stresses and 

normal average stresses occur, equal to the half-sum of the normal stresses. 

 

3.5. Strains and Displacements 

 

 The state of stress was analyzed as an effect of the internal forces and, 

similarly, the change of the dimensions will be further analyzed. 

A strain is a modification of the size of the MM. The modification of the 

length is called elongation, when the MM is stretched and respectively, it is called 

shortening, when the MM is compressed. The elongations and the shortenings are 

marked with l, x, y, z, etc. 

An angular deformation defines the modification of the (right) angles and it 

is marked with ;  , etc. 

In order to simplify and make the study of strains more clear, we shall consider 

a plane element OABC cut from an in-plane loaded MM. The plane state of stress can 
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be understood as the overlapping of three states of stress: two states of normal stress 

(fig.3.5, b and c) and one of pure shear (fig.3.5, d). Each of these states of stress 

produces strains. 

 The state of stress in figure (3.5, b) changes the length of the member, so that 

the member with the initial dimensions (dashed line) changes and takes the form of 

the member represented by a thick line. These changes are linear strains, ~x and 

~y - where ~x is an elongation, and ~y a contraction. Linear strains are measured 

in mm or m. 

 The member deforms similarly under the stress in figure (3.5,c), with the 

elongation  ~~y and the contraction ~~x. 

 Because linear strains cannot characterize properly the strains of an MM, 

because they depend on its dimensions, the notions of specific strains are used. 

 A specific linear strain in a certain direction is defined as the ratio between 

the elongation (shortening) of the member and its initial length in the respective 

direction. The following specific elongations are obtained for the members in figure 

(3.5, b, c): 

 
Fig. 3.5 
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  x

x

dx

' '



      and   y

y

dy

'' ''



,        (3.11,a) 

and the following specific shortenings (contractions): 

  y

y

dy

' '



and   x

x

dx

'' ''



       (3.11,b) 

 The tangential stresses deform the member as in figure (3.5,c). Under the 

action of the tangential stresses, the member changes only its right angle, and 

the lengths of the sides remain the same. The modification of the right angle is 

marked with xy. 

Since the angle xy is very small, the specific angular deformation can be 

defined as follows: 

  xy xytg
l

dx
 

'''
,         (3.12) 

and it is called specific sliding. 

 The specific linear and angular deformations are dimensionless. In the 

technical literature, the specific elongations are given in m/m or in percentage %, 

and the specific sliding can be expressed in m/m or in radians. 

The specific strains are tensors just like the stresses. 

 The path covered by a point of the MM from its initial position, 

corresponding to an unloaded MM, to the final position, after loading, is called a 

displacement. The displacements are vector quantities. 

The displacement can usually be the result of the following four general 

situations: 

a) the shifting of the whole MM; 

b) the rotation of the whole MM; 

c) the change of the dimensions of the MM; 

d) the modification of the MM’s angles. 

The first two are displacements of the rigid body, and the last two types are 

caused by the deformation of the MM. The displacements of the rigid have been 
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studied in kinematics. In Strength of materials, only the displacements caused by the 

deformation of the MM will be studied. 

 

4. THE MECHANICAL BEHAVIOR OF THE MECHANICAL 

MEMBERS – S13 

 

4.1. The Physical Aspect 

 

 The analysis of stresses and that of strains were studied separately, 

independently of each other and without taking into account the physical-mechanical 

characteristics of the material the MM is made of. In reality, however, the stresses 

and strains depend on each other and the interdependency is directly dependent on the 

physical and mechanical properties of the material of the MM (Mechanical Member). 

 In the Strength of Materials, the state of stress and that of strain of the bodies 

in equilibrium are analyzed. The equilibrium in Strength of materials, called static 

equilibrium, differs from the equilibrium in mechanics which implies zero 

acceleration. An MM subjected to forces, in equilibrium, is deformed and thus some 

of its parts will displace in relation to others. The movement will be accelerated 

until a certain strain is reached. The straining process will end when the internal 

forces, caused by strain, become large enough to balance the action of the 

external forces. When this stage is reached, the MM will be in equilibrium again. If 

the internal forces will not be so powerful as to stop the strains, the MM will 

fracture. 

 The load is called static if the forces are applied in such a way that the 

increase of the strains is small and it can be assumed that the acceleration effect 

is neglectable during the deformation process. Such a process is called a quasi 

static process. We will hereafter refer to the quasi static process produced by loads 

as a static loading. 
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Fig. 4.1 

 The physical aspect in the Strength of Materials represents the relations 

between stresses and strains. These relations, as well as the physical and 

mechanical properties of the materials, are established experimentally (through 

mechanical tests). 

 

4.2. The Tensile Test – S14 

4.2.1. The specimen 

 

 The relation between stresses and strains can be more easily and conveniently 

established on a long MM in which there is a uniaxial state of stress. For this purpose, 

we consider a specimen (fig.4.1) which is 

axially loaded, at the two ends, by forces 

F (fig. 4.1, a). The uniaxial state of stress 

is observed on the volume element 

sectioned from the beam (fig. 4.1, c). 

The equilibrium equation for the left 

side of the specimen (fig. 4.1, b) is the 

following:  

 

F dA
A

    0.

 

 Accepting the assumption that the normal stresses are uniformly 

distributed over the entire section ( = ct.) the above equilibrium equation results 

in F =  A0 which leads to the following:  

  
F

A0

.           (4.1) 

 The tensile test can be performed on a cylindrical steel specimen as shown in 

figure (4.1, a), according to SR EN 10002-1; 1994. It has the same diameter on the 

calibrated length Lc. Two marks are made on this length at distance L0, called the 

length between marks. The length of the specimen is considered to be the length 

between marks L0. 
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 The elongation of member dx is:  

 dx dx  ,  

and the elongation of the specimen (between the two marks) will be: 

 L dx dx
L L

   
0 0

0 0

 .  

 Starting from the assumption that the specific length is the same 

throughout the calibrated length ( = ct.), the above relation leads to: 

 L L  0;  
L

L0

.        (4.2) 

 

4.2.2. The testing machine and the measuring devices 

 

 The ends of the specimens have various shapes, chosen according to the 

fasteners of the testing machine. The testing machine is a special presser which 

ensures the slow increase of the axial force F and the precise measurement of its 

value under the prescribed loading speed conditions.  

The elongation of the specimen (between the marks) is measured, with a gauge 

called extensometer, concurrently measuring the axial force. The extensometer is 

fastened on the specimen by means of two pairs of knife edges: one pair is fixed and 

the other one is movable. They are attached to the specimen in the vicinity of the 

marks (at distance L0). 

 

4.2.3. The tensile test diagram 

 

 During the increase of the load, the intermittent values of the load and of the 

elongation are simultaneously read. Many laboratories are equipped with installations 

that record the force-elongation diagram. The tensile test diagram F = f(l), 

recorded by the gauge or represented according to the measurements, for light steel, 

has the form shown in figure (4.2, a). In order to obtain the diagram  = f(),relations 

(4.1) and (4.2) are used; load F is divided at the initial area A0 and the elongation L 
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at the initial length L0. Graphically representing the obtained data, in the system of 

axis: the abscissa - the specific elongations  and the ordinate - the stresses , the 

characteristic curve of the material is obtained. For steel, this looks like the one in 

figure (4.2,b). 

 
Fig. 4.2 

 

Only a part of the characteristic curve, namely, the OPECCA is used for calculating 

strength. 

 

 

4.3. The Elastic and Mechanical Properties of the Materials 

 

 The characteristic curve has a series of special points, called limits, which 

define the following characteristic measurements: 

a) The limit of proportionality, marked on the curve by point P, is the 

maximum stress up to which there is linearity between stresses and deformations 

(
0

p

p
A

F
 ).  

The equation of the area of proportionality (of section OP) is: 

    E ,         (4.3) 

Elongation to fracture 



Strength of Materials I 

54 
 

and it is called Hooke’s Law. This shows that, up to the proportionality limit, the 

specific elongations are proportional to the stresses. 

Property E is called the longitudinal modulus of elasticity (Young's 

modulus). Each material has a unique value of this property, which is a measure of 

the rigidity of that material. Thus, steels, regardless of their quality, have on average: 

EOL 210 GPa, and aluminum EAL 75 GPa. 

The values of the elasticity modules and the elastic characteristics for different 

materials are given in the tables (see annex 2). 

Only two materials have the characteristic curve with an area of 

proportionality, and those are steel and wood. They obey Hooke's law. The other 

materials have curvilinear characteristics. Because it is useful to use Hooke's law in 

these materials, SR EN 10002-1,2; 1994 defines the specific terms for the modulus of 

elasticity. 

 

 b) The conventional linear modulus of elasticity, which is the ratio between 

the stress and the corresponding specific elongation, for metals having a linear elastic 

section of the tensile characteristic curve, is the following: 

 E 



.           (4.4) 

 For other materials, it is necessary to consult SR EN 10002-1,2; 1994. 

c) The elastic limit, marked on the characteristic curve by point E (fig.4.2, b), 

is the value of the maximum stress up to which the material is perfectly elastic; 

  e
EF

A


0

.           (4.5) 

 Experience has shown that there is no perfectly elastic material, that is, after 

unloading, it does not return to the original length. All the materials, even subjected 

to a relatively small load, show a permanent deformation. The value of this 

deformation depends on the strength of the applied load. 
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 d) The (apparent) flow limit, marked on the characteristic curve by point C 

(fig.4.2, b) is the value of the stress at which the elongation increases although the 

load is maintained almost constant (fig.4.2,b): 

  c
cF

A


0

.           (4.6) 

In SR EN 10002-1; 1994 the flow limit is noted also with Rc 

After reaching the flow limit, the specimen continues to deform plastically, without a 

stress increase. The characteristic curve has an oscillating path, between the upper 

flow limit cs and the lower flow limit ci. The average value of the oscillations can 

be approximated by a straight line, which is called the flow level CC (fig.4.2). The 

plastic deformation that occurs for the flow level (CC), in light steel, is 20 to 50 

times higher than in the elastic one (the abscissa of point E). 

The plastic deformation during the flow occurs as a result of the relative siding 

between the faults formed and inclined at 45 to the axis of the specimen, without 

weakening the cohesion between the faults. 

 For this reason, upon reaching the flow limit, fine inclined lines appear, of a 

darker color, at 45 to the axis of the specimen, called Lüders - Chernov lines. 

These lines multiply into strips, which widen progressively until they cover the entire 

calibrated section of the specimen. The lines represent the traces of the siding planes 

of the material, where the tangential stresses are maximum (max = c  / 2). 

 Once the Lüders lines cover the entire calibrated section of the specimen, the 

stress begins to increase concurrently with the deformation. On the characteristic 

curve, this section is represented by the CA curve (fig.4.2) and is called the 

hardening area. 

If from a point on this area, instead of continuing the loading, it slowly unloads 

from point M, a linear relation between  and  is obtained during unloading. The 

section MO is a line parallel to OP (fig.4.2, b). When reloading the specimen, the 

line OM is covered, so that the material behaves elastically up to point M. Thus, 

point M is the new elastic limit of the material, higher than the one determined at the 
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beginning. This operation of increasing the limits p = E = c =  M is called strain 

hardening. 

 e) The fracture strength of the material, marked on the characteristic curve by 

point A (fig.4.2, b) is the maximum value of the stress and is marked with r (Rm in 

SR EN 10002-1; 1994) 

  r

F

A
 max

max ,
0

 

where; 

 A
d

0

0

2

4



  is the initial section 

area. 

f) In specimens made of light 

(ductile) steel, when the load approaches Fmax, the constriction of the specimen 

occurs (fig.4.3). In the constriction area, the section decreases until sudden noisily 

fracture occurs. After the constriction, load F applied to the specimen decreases in 

intensity, which is represented on the characteristic curve through area AB (fig.4.2). 

By measuring the diameter of the specimen subjected to an arbitrary load on 

the section AB (after the occurrence of the constriction) and calculating the 

corresponding area, the specific constriction can be determined. 

  
A A

A

0

0

.          (4.8,a) 

 For a fractured specimen, the rupture constriction is: 

  Z
A A

A

u


0

0

100 %         (4.8,b) 

where: 

 A
d

u
u

 2

4
  is the area of the fracture section. 

 g) By placing the two pieces of the fractured specimen end to end, we can 

measure the final length between the marks, Lu and the specific fracture 

elongation can be determined (according to SR EN 10002-1; 1994); 

 
 

Fig. 4.3 
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 A
L L

L

L

L
r r

u u 


 0

0 0


.       (4.9) 

h) Experimentally, it has been shown that with the elongation of a beam 

(specimen) a decrease of the section occurs, called cross-sectional contraction. It 

has been found that for the linear-elastic domain this contraction is proportional to the 

specific elongation. As such, a specific elongation of the specimen with x 

corresponds to a cross-sectional contraction proportional to the elongation x; 

     tr y z x     , 

where:  

 - is the cross-sectional contraction coefficient or Poisson's coefficient. 

Poisson's coefficient is an elastic constant of material. Its value ranges between 0.16 

and 0.42 and is given in the tables. If the deformation is plastic, the body does not 

change its volume and   =  0.5. 

 The measurements: the flow limit (c), the fracture strength (r), the 

fracture elongation (r), and the rupture constriction (Z) are called mechanical 

properties of the material. The constants: the longitudinal modulus of elasticity 

(E), the cross-sectional contraction coefficient (), the limit of proportionality (

p), the elastic limit (e) are called elastic properties of the material. 

For OL 37 the mechanical and elastic properties, according to STAS 1500-75, are the 

following: 

 







r

c

r

MPa

MPa

Z









370 450

210 240

25 26%

60 70%

...

...

...

...

 

E GPa

MPae p





 

210

0 24 0 28

200



 

, ... ,
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5. GEOMETRICAL PROPERTIES OF THE CROSS SECTIONS – 

S15 

 

5.1. General Notions 

 

 In the calculations made in Strength of Materials, we use quantities that 

depend on the shape and dimensions of the beam’s cross section. These are called 

geometrical properties of the section and are the following: the area, the static 

moments, the moments of inertia, the strength modulus and the radius of gyration. 

In order to study these quantities, the bear is imaginary sectioned with a 

normal plane (perpendicular) on the longitudinal axis (a cross section) and a 

system of straight three-orthogonal axes is used, with axis Ox along the beam, 

having the origin in the center of gravity of the section and with axes Oy and Oz 

in its plane (fig.5.1). Because the origin of the system is in the center of gravity of 

the section, axes Oy and Oz are called central axes. 

Appendix 4 contains the formulas for calculating the geometrical properties of 

certain cross sections frequently used in Strength of Materials.  

 
a)     b) 

Fig. 5.1 
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5.2. Area of the Cross Section 

 

 An area element dzdydA  can be considered around a point in the section 

plane. However, other formulas will also be used for the area element from here on: 

dA = bdy, respectively dA=hdz for rectangles, or dA = 2rdr for circles, etc. The 

area of the cross section will be obtained with the relation: 

 A dA
A

  .          (5.1) 

 The areas of the cross sections of the standardized beams (profiles) are listed in 

the tables in the annexes. Formula (5.1) will be used to determine the areas of 

arbitrary cross sections. 

 

5.3. Static Moments 

 

 Strength of Materials uses static moments of the surfaces with respect to axes z 

and y, defined by the expressions: 

 S y dA z dAZ

A

y

A

    ,

1 2

     S ,       (5.2) 

where A1 and A2 are parts of area A. The static moments of the whole section with 

respect to the axes y1 and z1, parallel to the central axes y and z, are: 

 S y dA z dAz

A

y

A
1

1 1 1    ,     S , 

where y1= y0+ y, z1= z0+ z (fig. 5.1,b). 

 By applying the theorem of the static moment (of Varignon), 

 y dA y dA z dA z dA
AA AA

1 0 1 0      , ,         (5.3,a) 

we obtain the formulas that define the position of the center of gravity with respect to 

the initially chosen system of axis O1y1z1: 
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 y

y dA

dA

y A

A

z dA

dA

z A

A

A

A

i i

i

A

A

i i

i

0

1

0

1



























,        z   (5.3) 

 The static moments of the whole section are null with respect to the central 

axes: 

 S y dA z dAZ

A

y

A

      0 0,     S .     (5.4) 

 Due to the fact that the axes of symmetry are also central axes, the static 

moments of the whole section with respect to these axes are null. Obviously, the 

static moment for a part of the section, relative to the axes of symmetry, is not 

null. 

 Static moments are measured in mm
3
, cm

3
, m

3
. 

 

 

5.4. Moments of Inertia 

5.4.1. Defining relations 

 

 The following geometrical moments of inertia are defined:  

a)  axial to the axis Oz, and  respectively Oy (fig. 5.1,b): 

  
A

2

Y

A

2

Z
dAzI     ,dAyI ,,        (5.5) 

b)  centrifugal (in plane Ozy ): 

  
A

zy
dAzyI ,         (5.6) 

c)  polar (to the center of gravity O): 

 I I r dA I Io P

A

z y    
2

. .       (5.7) 

 Since r
2
 = y

2
 + z

2
, relation (5.7) leads to: 

 I y z dA y dA z dA I IP

A A A

z y          
2 2 2 2  
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 Thus, the polar moment of inertia is equal to the sum of the axial moments 

of inertia, relative to the orthogonal axes passing through the considered pole. 

Because the area element is a positive size, and z
2
, y

2
 are r

2
 are positive sizes, it 

follows that the axial and polar moments of inertia are strictly positive. 

 The centrifugal moment of inertia is the sum of 

the area element dA and two coordinates (y, z) and as 

such can be positive, negative or equal to zero. For 

sections with at least one axis of symmetry (Oy axis 

in figure 5.2), there are always, on the y-ordinate, two 

area elements symmetrically relative to the axis of 

symmetry (Oy): one of positive sign (+ z) and the 

other negative. (-z) so that, for the entire area of the 

section, the following is obtained: 

 I z y dAzy

A

    0 . 

 Thus, the moment of inertia which is centrifugal to a system of axes of 

which at least one is the axis of symmetry is null. 

The moments of inertia are measured in mm
4
, cm

4
, m

4
. 

 

5.4.2. Variation of moments of inertia with respect to parallel axes 

 

 For the section in figure (5.1, b), the axial moments of inertia Iz, Iy and the 

centrifugal Izy relative to the central system of axes Ozy are known. 

The area element dA, in the system of axes O1z1y1, parallel to Ozy (fig.5.1, b), 

has the following coordinates:  

 y1= y0+ y,  z1= z0+ z. 

 In relation to the system of axes O1 y1 z1, the moments of inertia have the 

following expressions:  

    


A

0

A

2

0

A

2

A

2

0

A

2

1z
dAyy2dAydAydAyydAyI

1
, 

 

Fig. 5.2 
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    


A

0

A

2

0

A

2

A

2

0

A

2

1y
dAzz2dAzdAzdAzzdAzI

1
, 

 

   

.dAyzdAzydAzydAzy

dAzzyydAzyI

A

0

A

0

A

00

A

A

00

A

11yz 11









 

 By solving the integrals and taking into account relations (5.1), (5.4), (5.5) and 

(5.6), we obtain: 

 

.AyzII

,AzII

,AyII

00zyz

2

0yy

2

0zz

11

1

1







        (5.9) 

 Thus, the moment of inertia with respect to a parallel axis is equal to the 

sum of the moment with respect to the parallel central axis and the product of 

the surface area and the square of the span between the axes. 

The centrifugal moment of inertia with respect to the parallel axes is equal 

to the sum of the moment of inertia with respect to the own central axes and the 

product of the area and the coordinates of the center of gravity of the area in the 

new system. Thus, the value and the sign of the moment of centrifugal inertia are 

determined by the sign of the product of the coordinates of the center of gravity 

of the section in the new system. 

 The moments of inertia of a section composed of n simple sections of areas 

Ai (or A decomposed into n simple sections Ai), related to the system of axes Oyz 

(usually system of central axes), are calculated with the relations: 

      .zyAII,zAII,yAII
n

1i

i0i0iyzzy

n

1i

2

i0iyiy

n

1i

2

i0iziz ii


   (5.10) 

where I I Iz y z yi i i i
, ,  are the axial moments of de inertia, namely centrifugal of each 

area section Ai related to its own central axes 

(Oi1zi1yi1), parallel to axes Ozy  and zoi, yoi, are the 

coordinates of the centers of gravity Oi in the system 

of axes Ozy. 

 

 
Fig. 5.3 
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5.5 Exercises 

5.5.1 Central moments of inertia of a rectangle (fig.5.3) 

 

 Axes Ozy are main central axes of inertia (symmetry axes). The area element 

dA = bdy is chosen, on ordinate y. By substituting it in the first relation (5.5), the 

following is obtained: 

 I y dA y b dy
b h h b h

z

A h

      








  

























 



2 2

2

2 3 3 3

3 2 2 12
/

/ h

. 

 Doing the same in relation to axis Oy axis, these formulas are obtained: 

 I
b h b h

z y zy=   ,     I        I






3 3

12 12
0, .   (5.17) 

 The moment of centrifugal inertia is null because the z and y axes are axes of 

symmetry. 

 

5.5.2. Central moments of inertia of the circular cross section (fig. 5.4) 

 

 A system of main central axes is chosen, having 

its origin in the center of the circle and the area 

element dA = 2 rdr. 

 By applying relation (5.7), the polar moment of 

inertia is obtained: 

 I I r dA r dr
d

p

A

       








 0

2 3

0

2 4

2
2

4 2



 d/

 

therefore,  

 I
d

P 
 4

32
.       (5.18) 

 Since axes z and y are diametrical (equatorial) axes of the circle, there is the 

equality Iz= Iy and relation (5.18) leads to: 

 I I
I d

z y
P  
2 64

4
, Izy  0 .   (5.19) 

 
Fig. 5.4 
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5.5.3. Annular cross section or the annulus (fig. 5.5) 

 

 Considering that this section is composed of a 

circle of diameter D, from which another circle of 

diameter d is subtracted, the following moment of 

polar inertia is obtained: 

 I
D d d d

D
P   


 























4 4 4 4

32 32 32
1


  (5.20) 

 In a similar manner for the axial moments of 

inertia, we obtain: 

 I I
D d

D
z y 


 























 4 4

64
1             (5.21) 

 Ratio k
d

D
  is a constructive factor of the annular section, so that the polar or 

the axial moments of inertia depend only on the outer diameter D and can be written: 

  I I
D

kz y 


 
 4

4

64
1  and   I

D
kp 


 

 4
4

32
1 .   (5.21,a) 

 

5.5.4. The section made up of two rectangles with axis Oy as the 

axis of symmetry (fig.5.6) 

 

a)   The position of the center of gravity in 

the O1z1y1 system of axes results: 

 0z
G
 ,  cm 4

12246

8122046
y

G





 . 

 The main axes of Ozy were plotted in figure 

5.9 and the positions of the centroids of the simple 

sections were marked. 

 
Fig. 5.5 

 
Fig. 5.6 
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b) The moments of inertia with respect to the central axes are: 

 Izy= 0 (there is an axis of symmetry), 

   4
3

2
3

2

oiiziy cm 800122
12

122
046

12

46
zAII 





  

  43
3

2
3

2

oiiyiz cm 1088424
12

122
424

12

46
yAII 





  

 

5.6. Radius of Gyration 

 

 By definition, the following geometric quantities 

 i
I

A
z

z   and  i
I

A
y

y
 ,       (5.22) 

are called radii of inertia (gyration). 

 The defining relationships (5.22) can be applied to any axial moment of inertia: 

Iz, Iy, Iu, Iv, I1, I2 etc. 

 

5.7. Strength Modulus 

 

 When calculating the strength modulus, axes Oz and Oy are considered to be 

main central axes. 

The geometric quantities: 

 
max

z
z

y

I
W    and 

max

y

y
z

I
W  ,       (5.23) 

are called strength moduli to axis Oz, respectively Oy. In the relations above ymax, 

respectively zmax represent: the distance between the farthest point of the section to 

axis Oz, and respectively to axis Oy. 

 The following quantity 

 
max

P
P

R

I
W  ,          (5.24) 
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is called a polar strength modulus. Rmax is the distance between the center of gravity 

(the pole of the section) and the point farthest from the pole. 

 In the case of the rectangular sections, the axial strength moduli are: 

 

.
6

hb

b

2

12

hb

z

I
W

,
6

hb

h

2

12

hb

y

I
W

23

max

y

y

23

max

z
z













       (5.25) 

 For the circular section, the axial strength moduli are: 

 
32

d

d

2

64

d

y

I
WW

34

max

z
yz








,      (5.26) 

and the polar strength modulus will be: 

 
16

d

d

2

32

d

R

I
W

34

P
P








.       (5.27) 

 In the case of the annular section (fig. 5.8) the following formulas are obtained: 

 

 

 .k1
16

D

D

d
1

16

D
W

,k1
32

D

D

d
1

32

D
WW

4
343

p

4
343

yz





















































     (5.28) 

 From analyzing formulas (5.28), compared to (5.20) and (5.21), it should be 

noted that the strength moduli of the compound sections cannot be obtained by 

summing the strength moduli of the component figures, but only by applying 

relations (5.26) and (5.27). 

 

6.  AXIAL LOADS – S16 

 

6.1. Stresses and Strains - S16 

 

 A beam is axially loaded, if the only forces that occur in its cross sections are 

the axial forces N, which can be constant or variable. The value of the axial force N 

near a section is equal to the sum of the projections on the axis of the beam of all the 

forces located to the left or to the right of the considered section. 
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In order to study the stresses it is recommended to represent the diagram of the 

axial forces for determining the hazardous section (or sections). The axial forces are 

considered positive when they 

cause the elongation and 

negative when they cause the 

compression of the cross 

section. 

 The axial force is the 

result of all the normal stresses 

that develop in a certain cross 

section. In order to determine 

the normal stresses, we 

consider an axially loaded beam, of length L, made of a homogeneous and isotropic 

material and having a constant cross section of area A. 

 By applying an axial force N, the beam elongates with quantity L. An 

arbitrary section BC, located at abscissa x, displaces by quantity x. According to 

Bernoulli's hypothesis that a plane and normal section on the axis of the bar before 

deformation remains plane and normal on the axis of the beam after deformation, it 

results that all the points of section BC displace axially by the same value  x= ct. 

and: 

  x

x

x
ct 


.  

 According to Hooke's law, the constant normal stresses correspond to the 

constant specific elongation: 

   E . 

 Due to the hypothesis we considered the material to be isotropic, thus the 

modulus of longitudinal elasticity is constant (E = ct.) and it results  = ct. 

Therefore, the normal stresses are evenly distributed on the cross-section 

surface (fig.6.1, b). 

 
Fig. 6.1 
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From the equation of balance written for the left side of the beam (fig.6.1, b) it 

results: 

  
AA

AdAdAN  . 

 From this equation we obtain the value of the normal stress for the tensile or 

the compression stress: 

  
N

A
.                       (6.1) 

 The state of stress, in this case, is a uniaxial state (fig. 6.1, c). 

Since the material is considered to obey Hooke's law, the specific deformation 

for the axial stresses has the following expression: 

 


 
E

N

E A
.         (6.2) 

 The value of the elongation, respectively of the total shortening of the beam is: 

 L L
N L

E A
  




 .       (6.3,a) 

 If on the length of the beam the quantities N, E, and A are variable, or constant 

on certain portions of the beam, the elongation is calculated with the relation: 

 L
N

E A
dx

L


   or  L

N L

E A





 .      (6.3,b) 

 The elongation (shortening) L is smaller as the EA product is bigger and 

therefore the EA product is called the elongation-compression modulus of rigidity. 

The relations solved above and those that will be solved below are valid for 

both the elongation and the compression loads. 

The long beams subjected to compressive stresses should be tested for 

buckling. The buckling phenomenon (also called loss of elastic stability) occurs 

before the stresses produced by the compressive stress reach the value 
a
. Therefore, 

the compression strength can be calculated only for short beams whose length does 

not exceed 15 times the size of the smallest cross-section: 

 L d 15 min ,         (6.4) 
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and the buckling calculation will be done for L d 15 min
. 

 

6.2. Calculation of Tensile - Compressive Strength - S14/17 

 

 The relations deduced above are used to solve the problems of strength of 

materials: testing, loading capacity and dimensioning. These problems are solved by 

respecting both the strength condition (maxa) and the rigidity condition (max  a 

or Lmax  La). The allowable strength is (a) and the allowable deformation is (a, 

La). 

Taking these into consideration, the calculation formulas are deduced on the 

problems: 

a) The testing of a part subjected to an axial stress consists in determining the 

maximum stress, respectively the maximum strain and comparing the value 

obtained with the allowable one. The resulting value must not exceed the 

allowable value, i.e.: 

- from the strength condition: 

   ef

ef

a

N

A
 max           (6.5) 

 - from the rigidity condition: 

   max 



N

E A
a   or   L

N L

E A
Lamax 




 .   (6.5,a) 

 In the first relation (6.5) Aef refers to the value of the effective area of 

the section. 

The inequalities in formulas (6.5) are not totally restrictive, meaning that the 

boundary values (a, a, La) can be exceeded by 3 to 5%. In order to meet 

the condition of the efficient use of the beam it is recommended that the actual 

value of the stress or strain should not be less than 80% of the allowable 

value. 

If the beam simultaneously meets the following conditions: 
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  0 8 1 05, ,max     a a
, 

  0 8 1 05, ,max     a a ,     (6.5,c) 

  0 8 1 05, ,max     L L La a
. 

we will say that THE BEAM ENDURES. 

If a single measurement calculated from the relations (6.5) exceeds the allowable 

value by 5%, then we say that THE BEAM FAILS. 

If the calculated quantities are below 80% of the allowable values, it is said that 

THE BEAM IS OVER-SIZED. 

b) The maximum applicable load is calculated for both the beams for which 

the value of the load is unknown, and for those that were tested and did not 

correspond to the imposed load, because they were either under-sized and/or over-

sized. 

 Knowing the dimensions of the cross-section of the beam, the material from 

which it is made (a) and the deformation conditions (a, La), the maximum axial 

force is determined with one of the formulas: 

- from the strength condition: 

   N Acap ef a   ,      (6.6,a) 

  - from the rigidity condition: 

   N E Acap ef a      or  
L

LAE
N

aef

cap


 . (6.6,b) 

 If we take into account both conditions (strength and rigidity), we reach two 

different values for the maximum load. The lowest value is taken into 

consideration. 

The engineer must always choose the value of the force, so that the beam 

will withstand, will be efficiently used, and the value of the force will be the 

estimated one. Therefore: 

   0 8 1 05, ,min min   P P Pcap cap .     (6.7) 
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c) Dimensioning is the most difficult problem, and it consists in determining the 

dimensions of the cross section of the beam, so that it can withstand the imposed 

loads. 

The first operation for sizing is to find the maximum normal stress. This results 

from the axial force diagram. Then, the material for the beam is chosen and the 

values of the allowable strength and of the allowable strain are selected. 

The required area of the cross-section is calculated with the relations: 

- from the strength condition: 

   A
N

nec

a

 max


,      (6.8,a) 

  - from the rigidity condition: 

   A
N

E
nec

a




max


  or  

a

nec
LE

NL
A




 max .   (6.8,b) 

As with the load capacity, two different values for the area can be obtained here. 

This time the highest value is taken into account to meet both conditions 

simultaneously. Also the cross-sectional dimensions of the beams are estimated and 

the standardized value must always be chosen. For this purpose, the shape and the 

dimensions of the sections given in the tables with standardized profiles are chosen. 

Exercise 6.1. The beam in figure 6.2 should be dimensioned and the 

displacement of point 5 should be determined, knowing that a=150 [MPa], a= 250 

 
Figure 6.2 
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[m/m]  and E=210 [GPa]. 

 The hazardous areas are on sections 1-2 and 3-4. 

a) The calculation under the strength condition: 

- for section 3-4 

][04.36
150

1015344 3

mm
N

d
a











 

- for section 1-2 

a

21

2

nec

N

4

)d4,1(
A



 


  

][01.35
150

102834

4,1

14

4,1

1 3

mm
N

d
a











 

b) The calculation under the rigidity condition: 

- for section 3-4 

]
mm

mm
[10250]

m

m
[250 6

a




  

 

][51.43
21010250

15344

6
mm

E

N
d

a











 

- for section 1-2 

 
E

N

4

d4,1
A

2

nec









 

      ][17.59
21010250

2834

4,1

14

4,1

1
6

mm
E

N
d

a











 

 Four values have been obtained for diameter d of the beam. The size of the 

diameter is chosen by taking into account the highest value of diameter d. 

We choose d = 60 [mm]. 

The calculation of the displacement of point 5: 

][036.0
1

180125

1

140153

4,.1

120153

4.1

160283

50

4

210

1
2225 mm

AE

lN

i

ii 






 



















  
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Exercise 6.2. Calculate the maximum load that can be withstood by the beam in 

figure 6.3, knowing that a=120 [MPa], a= 175 [m/m]. 

 The hazardous areas are on sections 1-2 and 4-5. 

c) The calculation under the strength condition: 

- for section 1-2 

efacap AP16N    

][2.2356
164

20
120

16

2

N
A

P
efa











 

- for section 4-5 

 
4

2030
A

22

ef





;       P19Ncap   

 
][2.2480

194

2030
120

19

22

N
A

P
efa











 

b)    The calculation under the rigidity condition: 

- for section 1-2 

]
mm

mm
[10175]

m

m
[175 6

a




  

EAP16N aefcap    

        ][7216.0
164

2101017520

16

62

kN
EA

P
aef











 

 
Figure 6.3 
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- for section 4-5 

EAP19N aefcap    

      
 

][75956.0
194

210101752030

19

622

kN
EA

P
aef











 

 Four values were obtained for the maximum force. The lowest value is chosen. 

We choose P= 720 [N]. 

 

6.3. Statically Indeterminate Beam Systems – S15/18 

 

6.3.1. General notions 

 

 The stresses and the strains of a statically determinate beam have been 

analyzed so far. In engineering practice there are assemblies and subassemblies made 

of beam systems that can be statically determinate or statically indeterminate. 

When the number of the unknown values (reactions and/or stresses) exceeds 

the number of the static equilibrium equations, the system is called statically 

indeterminate. The difference between the number of the unknown values and the 

number of the static equations is the degree of indeterminacy of the system. To 

solve this case, a number of deformation equations equal to the degree of 

indeterminacy of the system is added to the static equations. These additional 

equations are obtained from analyzing the geometric aspect and the compatibility of 

the beam system. 

The axially loaded statically indeterminate systems can be caused by: 

- connections that prevent the strain caused by loads or by alterations of the 

beam temperatures; 

- technological or assembling stresses that occur in the beam systems; 

- the use in building a beam of several materials with different physical and 

mechanical characteristics. 

In all these situations, the statically indeterminate problems can be solved by 

covering the following three aspects: 
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a) the static aspect – by writing the static equilibrium equations, the unknown 

values of the system and the degree of indeterminacy are established; 

b) the geometrical aspect – by writing a number of deformation equations 

equal to the degree of indeterminacy; 

c) the physical aspect – by expressing the deformations mentioned at point b) 

according to the forces or stresses in the beam. 

Thus, after covering the three aspects, the necessary equations are obtained from 

the static and the physical aspects. By solving these equations, the solutions of the 

statically indeterminate problem are expressed in forces, stresses or strains. 

 

 

6.3.2. Beams with deformations prevented by bearings 

 

 Exercise 6.3. The cantilever (or hinged) beam, fixed at the two ends (fig. 

6.4). 

 We consider the straight, prismatic beam fixed or hinged at the two ends and 

loaded with the axial load P at a point at 

distance a from bearing 1 (respectively at 

distance b from bearing 2). 

 Solution: The reactions in the two 

bearings are H
1
 and H

2
. 

 The static aspect: 

 H
1 

+ H
2
= P (simple statically 

indeterminate system): 

 The geometric aspect: 

 a + b = 0 (the total deformation of the beam must be zero): 

 The physical aspect: 

  
H a

E A

H P

E A
b1

1 1

1

2 2

0








  , 

which leads to: 

 
Fig. 6.4 
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  H
P

a

b

E

E

A

A

1
2

1

21



  

  and then H P H2 1  . 

 Knowing the values of the reactions, the axial forces variation diagram can be 

drawn, and then the resistance calculation can be performed. 

 If E A E A E A1 1 2 2      and     L = a + b,  then; 

 H
b

L
P1    and H

a

L
P2   .  

 

6.3.3 Stresses caused by arrested expansions 

 

 A straight beam of length L, which can expand freely, when it is uniformly 

heating, elongates by (fig. 6.5, a): 

 L=L t    

where  is the coefficient of linear expansion and t = t - t
0
 is the increase in 

temperature. The specific elongation of the beam is: 

    



L

L
t     

 When the bar has static hinges or is fixed at both ends (Fig. 6.5, b), which 

arrests the expansion, an axial compressive force occurs in the beam. This force 

should shorten the bar with the elongation caused by the increase in temperature (fig. 

6.5, c and d), that is with: 

  L t L
N L

E A
   




 ,  

from which the formula for the 

axial compressive force is 

obtained: 

 N=  E At   

 As such, the following 

stress will occur in the beam: 

 

Fig. 6.5 
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     
N

A
E t .   

 the stresses in the arrested expansion beams. 

 

Exercise 6.4. Section I20 (A = 35.5 

cm
2
, E=210 GPa, =1210

-6
 C

-1
) 

mounted as in Figure 6.6, at 5C 

temperature, leaving an expansion 

space a = 2 mm. Determine the stress 

and the strain in the beam at a temperature of 45C. 

 Solution: The space required for the arrested expansion is: 

 L=t L=1210-6407000 = 3.36 mm. 

 Since L = 3.36 mm  a = 2 mm, the expansion is arrested. Therefore, the 

system is statically indeterminate. The equations of the three aspects are the 

following: 

a)  ,HHN 21        

b)      ,aLL NT        

c)  .a
AE

LN
tL 




   

which leads to: 

 ,7.1363350210
7000

2
401012 6 kNAE

L

a
tNH 

















   

 .MPa150MPa8,40
3350

107,136

A

N
a

3

ef 


   

Note: The stresses and the strains that occur due to the arrested expansion are 

supplementary and are added to those produced by the live loads. 

 

 

 
 
 
 

 
Fig. 6.6 
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7. TORSION OF STRAIGHTS BEAMS – S16 

 

7.1. General Notions 

 

 A beam is subjected to torsion the stress in any cross section of the beam is a 

moment of torsion (torque). 

The torque in a given section is equal to the sum of all the moments of the 

forces to the left or to the right of the considered section. 

    xiiit MRPM         (7.1) 

where Pi are the external forces normal on the axis of the beam, Ri the distances from 

the axis to the bearings of the forces, and Mxi are the external moments oriented in the 

direction of axis Ox. 

If the beam transmits a power P*, in [kW], at speed n, in rotations per minute, 

then the value of the torque is: 

 
n

P
M t






30
             [kNm]      (7.2) 

 When the value of the torque varies along the beam, in order to calculate 

strength, it is recommended to draw the torque diagrams and to specify the hazardous 

section (or sections). 

In the field of activity of the mechanical engineer there are frequent 

applications of torsion of straight beams, such as: shafts, driving axles, screws, etc. 

 

7.2. Stresses and Strains Occurring in Circular and Annular Cross 

Section Beams Subjected to Torsion 

 

 We consider a straight beam of circular and constant longitudinal section made 

of a continuous, homogeneous, isotropic material that obeys Hooke's law. Circles and 

generators are drawn on the surface of the beam, which form a network of curvilinear 
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rectangles, of which the elementary rectangle ABCD is considered. We take into 

consideration section (1) located at distance dx from section (2), (fig.7.1, a). 

After applying the torque, the beam deforms as shown in figure (7.1, b). the 

analysis of the deformation of the beam proves that: 

a) the circles in the cross section planes remain circles contained in the same cross 

section planes, and the distance between them does not change significantly 

(Bernoulli's hypothesis is confirmed, for the points on the outer surface and also 

extends to the points inside the bar); 

b) the rectangular elements on the lateral surface are transformed into parallelograms 

whose sides maintain their length; 

c) the two generators (fibers) remain parallel to each other, but change to helical 

lines. 

Thus, any rectangular element on the surface of the beam is deformed by pure 

sliding into a parallelogram (fig.7.1,c). 

 

  0
0

 


lim




x

e

x

de

dx
. 

 Arc e is the displacement through sliding of point A or B in A’ and B’, 

respectively. Thus, circle (1) rotates by arc e = AA’= BB’ against circle (2). The 

angle at which section (1) rotates related to section (2), which is at distance dx from 

section (1), is called angular deformation or relative rotation and is marked by d  

(fig. 7.2). It can be written as: 

 e AA BB R d dx     ' ' .  0  

It results: 

 


0    R
d

dx
R ,  

where quantity: 

 



d

dx
,    (7.3) 

is called specific rotation. 

 
Fig. 7.2 
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 Similarly, for arc MMă, located at distance r from the axis of the beam, the 

following is obtained:  

 MM r d dx'     , 

from which the specific sliding at radius r is calculated. 

 


   r
d

dx
r .          (7.4) 

 Since the material of the beam is considered continuous, homogeneous, 

isotropic and elastic, the elemental rotation d has the same value for all the points of 

a section. Since d is constant throughout the entire cross section and the specific 

rotation  remains constant too throughout the entire length dx. Thus from relation 

(7.4) it follows that the specific sliding varies linearly according to r. It has a null 

value on the axis of the beam and a maximum value (0= R ) on the outer contour. 

Due to the sliding deformations, tangential stresses occur in the beam, which can be 

determined, for loads in the linear-elastic field, by means of Hooke's law: 

       G G r .        (7.5) 

 We consider an area element dA at distance R = d/2 (therefore on the outer 

contour of the beam, (fig. 7.2) acted upon by a tangential stress  having an arbitrary 

direction. It has the following components: xs- tangent to the contour and sx the 

radial. According to the duality of the tangential stresses, a stress sx on the outer 

surface of the beam will correspond to a stress xs. Because no axial shearing forces 

have been taken into account on the outer surface of the beam which will produce 

stress sx, this is null. 

 Thus, the tangential stresses contained in the cross section are 

perpendicular to the radius and vary proportionally with it. According to the law 

of the duality of tangential stresses, the pair of stress xs is stress sx and is contained 

in the axial plane (fig.7.2), that is: 

        xs sx G r.        (7.5, a) 

 By writing the equation of equivalence between the effort Mt and the stresses in 

the plane of the cross section, we will obtain: 
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  M r dAt
A

     

and by replacing  in expression (7.5), the following is obtained: 

 M G r dA G It
A

p       2 .      (7.6) 

 In the above relations, we took into account that: 

 r dA I
A

p

2   , 

is the moment of polar inertia) 

 By substituting the quantities   G from (7.6) with the expression resulting 

from (7.5), we obtain the formula of the tangential stress at circular cross section 

beams subjected to torsion: 

   
M

I
rt

p

,           (7.7) 

which shows that the tangential stress varies linearly depending on the radius. 

From relation (7.7), which is graphically represented in figure (7.2), it results 

that the tangential stresses are maximum on the outer contour of the beam: 

 max   
M

I
R

M

W

t

p

t

p

,        (7.8) 

where Wp is the polar strength modulus and is given by the relation: 

 W
I

R
p

p


max

.         (7.9) 

 The formula for the specific rotation results from expression (7.6) and is the 

following: 

  


M

G I

t

p

.         (7.10) 

 Therefore, the specific rotation is directly proportional to the moment of 

torsion and inversely proportional to the GIP product, which is called torsion 

rigidity of the circular and annular cross section bars. The specific rotation is 

measured in rad/m, or degrees/m. 
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The angular deformation of a beam of length L or the relative rotation of the 

beam, marked with , which represents the angle by which the final section rotates 

related to the initial one, is obtained from relation (7.3) and (7.10), as follows: 

     


  d dx
M dx

G IL L

t

p
L

  .     (7.11) 

 If the beam is homogeneous, of constant section and stress Mt is constant 

throughout the length L, by integrating the relation (7.11), the following is obtained: 

  




M L

G I

t

p

        (7.11,a) 

and if the values of the quantities below the integral (7.11) are constant on sections of 

the length of the bar, then relation (7.11) becomes: 

  





M l

G I

ti i

pi

.        (7.11, b) 

 Although relations (7.7), (7.8), (7.10) and (7.11) have been calculated for the 

circular section, they can be similarly solved for the annular section as well. 

In formulas (7.6) to (7.11), the quantities Ip and Wp are mentioned and have the 

following expressions: 

 
16

       ,
32

34 d
W

d
I pp








,      (7.12, a) 

for the circular cross section and: 

    I
D

k
D

kp p


  


 
 4

4
3

4

32
1

16
1,        W    (7.12, b) 

for the annular cross section, where k
d

D
 .  
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7.3. Calculation of the Torsional Strength of Circular Cross Section 

Beams 

 

 The calculation of torsional strength involves solving the problems of 

verification, maximum applicable load and dimensioning. This calculation is based 

on the traditional established formula of the strength condition: 

  max  a
,         (7.13) 

as well as the rigidity condition: 

  max  a   or   max  ,      (7.14) 

where max  is obtained with formula (7.8), max with formula (7.10) and  with one 

of the formulas (7.11). 

 The values of the allowable torsional strength a, respectively a or a are 

established for each MM depending on the material, the operating conditions, the 

functional role, the mode of considering the forces, etc. 

 1. The verification problem is solved using the formulas: 

  max  
M

W

t

p

a         (7.15, a) 

  max 



M

G I

t

p

a   or  max 



M

G I

t

p

   (7.15, b) 

 Depending on the results obtained, the following verdicts will be given: 

a)  THE BEAM ENDURES, if all the calculated values (, , or ) are below 

the allowable quantity and at least one exceeds 0.8 % of the allowable value;  

b)  THE BEAM FAILS, if at least one of the values exceeds 5% of the 

allowable value; 

c)  THE BEAM IS OVERSIZED, if all the determined values are below 0.8% 

of the allowable one. 

 The maximum load is calculated in situations b and c. 

 2. Maximum applicable load problems are solved with these relations: 

 M Wt cap p a,    ,        (7.16, a) 
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 M G It cap p a,       or  M
G I

L
t cap

p a

, 
  

.   (7.16, b)  

The value taken into account is the smallest; it will continue to be used to adopt 

a rounded integer value that meets the condition: 

 0 8 1 05, ,, ,   M M Mt cap t t cap . 

 3. Solving the dimensioning problems involves first determining moment 

Mtmax (from the moment diagram), then choosing the material and adopting, a and 

respectively a or a, and for the circular section the following formula is obtained 

from relations (7.8) and (7.12, a): 

 d
M

nec
t

a






16
3

max

 
,        (7.17,a) 

and from formulas (7.10), (7.11), (7.12, a), for the rigidity condition, these formulas 

are obtained: 

 4

a

maxt
nec

G

M32
d

 
     or 4

a

t
nec

G

LM32
d

 


 .    (7.17, b) 

 In the case of the annular cross section beams, the ratio k = D/d is adopted and 

from relations (7.8), (7.10), (7.11), (7.12, b), we obtain: 

 
 

4
4

a

maxt
nec

k1

M16
D





,       (7.18, a) 

and respectively: 

 
 

4
4

a

maxt
nec

k1G

M32
D





  or 

 
4

4

a

maxt
nec

k1G

LM32
D







.  (7.18, b) 

 

 When both the strength and the rigidity conditions are taken into account, two 

values are obtained for the diameter of the MM. The highest value is adopted in 

round figures. 
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 Exercise 7.1. Establish the dimension of a steel shaft (G = 8.110
3
 MPa, a = 80 

MPa, a = 1 degree/m) that transmits a power of P
*
= 30 kW at a velocity n = 200 

rot/min. The shaft will be calculated in the two cases: 

 a) circular cross section 

 b)annular cross section k= D/d = 0,7. 

 Solution: 

 The torque moment is determined as being: 

 kNm 1.432= 
200

3030
=

30








 n

P
M t  

 a) The circular cross-section: 

 mm 01.45
80

1014321616
3

3

3
Á 









 a

tM
d , 

 mm 67.56
18010

1081

1014323232
3

3

3

3

4
" 












 a

t
nec

G

M
d . 

 We choose d = 60 mm. 

 Note: A lower value (d=55 mm) than the one calculated cannot be selected 

because, when tested, under the rigidity condition, the following is obtained: 

 .05.1/128.1
10180

551081

10432.13232 3

43

6

4max a

ot m
DG

M



 










  

 b) The annular cross section: 

 
   

 mm 65.53
808.01

10432.116

1

16
3

4

6

3
4










 k

M
D

a

t

 
   

 mm 66.64
3

18010

10818,01

10432.132

1

32
4

3

34

6

4
4















 kG

M
D

a

t  

 We consider: D = 65 mm, d = 52 mm. 

 The material saved by using this annular section is: 

 
 

%.75.57100
60

526560
100

A

A
2

222

I

I 



 IIA
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7.4. Strain Energy in Circular and Annular Cross Section Beams 

Subjected to Torsion 

 

 Considering a volume element from the beam, under the action of the 

tangential stresses  and the specific elementary sliding , the specific elementary 

mechanical work is produced:  

  ddL1  . 

 The load being in the linear elastic domain  = G, therefore 
G

d
d


  , and the 

elementary mechanical work will be equal to the deformation energy, according to 

the hypothesis that in the elastic domain the whole mechanical work carried out by 

loading the beam accumulates in its volume as strain energy: 

 .d
G

ddUdL 11 


   

 The specific deformation energy stored in the unitary volume element when the 

stress increases slowly from 0 to will have the following form: 

 
G2G

d
dUU

2

00
11






        (7.19) 

and that accumulated in the elementary volume is: 

 .dV
G2

dVUdU
2

1 


 

 For the circular cross section straight beam, the following applies: 

 ,dxdAdV   ,
32

d
dArI   ,r

I

M 4

A

2

p

p

t 


 


  

so the deformation energy accumulated in the circular cross section beam, of length 

L, subjected to torsion will have the value: 

 .
IG2

dxM
dAr

IG2

dxM
dV

G2
dUU

L
p

2

t

A

2

L 2

p

2

t

V

2

V  










   (7.20) 

 If the bar is homogeneous, of constant circular cross section and loaded 

throughout its length by the same Mt, then the accumulated energy of deformation 

will have the value: 
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 .
dG

LM16

IG2

LM
U

4

2

t

p

2

t









        (7.21) 

 If the beam has an annular cross section with the dimensional factor k
d

D
 , the 

strain energy will be written as: 

 
 44

2

t

k1DG

LM16
U







.       (7.21,a) 

 

 

7.5. Calculation of Closed Coil Helical Springs 

 

 The helical spring (fig. 7.3) is made of a steel wire having the diameter d which 

is wound on a cylinder in the form of a spiral. The distance D/2 from the axis of the 

cylinder to the axis of the wound wire is 

called the winding radius. A force P acts 

on the spring along the axis of the cylinder. 

If the force decreases in the center of 

gravity of a coil, a force P and a moment M 

= P  R will be obtained. 

 By decomposing force P and 

moment M along the axis of the coil and 

perpendicular to it, the following stresses 

are obtained: 

 

.sin R PM

 ; cosR PM

; cos P=T

  ; sin PN

i

tt

















 

 At closed coil helical springs the winding angle of the coil reaches low values, 

so that the following approximation can be made:  

  1 cos ;  0 sin    In this case the stresses in any section of the arc are:  

 
Fig.7.3 
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2

D
P=R PM t   and   P=T .      (7.22) 

 The tangential stress caused by the shearing force is very small compared to 

that caused by torque, so that only the effect of the torque will be taken into account. 

It will turn out: 

 .
d

D P8

d2

DP16

W

M
33

p

t
max












       (7.23) 

 Relation (7.23) is used for calculating the strength for:  

 verification, maximum applicable load, dimensioning. 

 The diameter of the coil is obtained from this relation: 

 3  
D P8

d
a

nec
 


         (7.24) 

 The allowable strength of the spring steel (OLC55A, OLC65A, OLC75A, 

OLC85A, 51SI17A, 60SI15A, 51CR11A) is considered: a= 400 to 800 MPa. 

 The arc strain is defined as its compression or elongation under the action of a 

load (fig.7.5) and is called sag. 

 The relation to determine the sag is obtained by considering the equality 

between the mechanical work of the applied external forces and the potential strain 

energy accumulated in the volume of the arc. Taking into account that 
2

fP
L


 , and 

the strain energy is given by relation (7.20), where the following substitutions are 

made: 

    ;
2

DP
M t


   D=L  , 

the equality L = U becomes: 

  






L p

2

t ,
IG2

dxM

2

fP
 

respectively: 

  
dG

2

DP
nD16

2

fP
4

2










 









 , 

which results in the formula for the sag: 
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4

3

dG

nDP8
=f




.        (7.25) 

 

 

8. BENDING STAIGHT BEAMS – S17 

 

8.1. Introduction – S17 

 

 A beam is acted upon by a bending stress, when there are bending moments in 

its section. In most cases, the bending stress is caused by traverse forces (acting 

perpendicularly on the axis of the beam). In these cases, both bending moments and 

shear forces occur in the cross-sections. 

Within this chapter it is admitted that each force passes through the center of 

gravity of the beam’s cross section (the longitudinal axis of the beam) and does not 

cause an additional torsion load. 

Depending on the nature of the internal stresses that appear in the beam, the 

load may be: 

 - pure bending, fig. 8.1 a, when there are only bending moments in the 

beam’s cross section; 

- simple bending, fig. 8.1 b, when there are both bending moments and shear 

forces in the beam’s cross section. 

Depending on the position of the traverse forces in space, the bending load 

may be: 

- oblique pure bending, fig. 8.1 c, when all the applied forces belong to a single 

longitudinal central plane, different from the main central planes of inertia; 

- oblique simple bending, fig. 8.1 d, when all the applied forces belong to a 

single longitudinal central plane, in which a concentrated force will occur; 

- twisted bending, when the applied forces are arranged in two or more central 

planes, (and the direction of the moment vector varies along the beam). 
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8.2. Stresses and Strains in Straight Beams Subjected to Plane Pure 

Bending – S18 

 

 We consider a straight 

beam whose cross-section is 

symmetrical with respect to the 

vertical plane x0y, subjected to 

pure bending, by a bending 

moment directed along the axis 

0z (fig.8.1, a). 

 The beam is made of 

continuous, homogeneous and 

isotropic material, having a 

linear - elastic property (the 

strains are elastic and 

proportional to the stresses). By 

 
Fig. 8.2 

 
Fig. 8.1 

Neutral axis 

Before deformation 
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deformation, after applying the bending moment, the plane and normal sections on 

the axis of the beam before deformation, will be plane and normal on the axis of the 

beam after deformation too. It is also admitted that all the applied loads are contained 

in a main central plane of inertia (plane x0y). 

 From the considered beam, a member of length dx is detached (fig.8.2b). 

Before applying the bending moment, the fibers of the member AD, BC, MN, are 

straight and parallel to the axis of the beam 0x. The sections at the ends of the 

member (AB, CD) are plane and perpendicular to the axis of the beam. Upon loading 

(the bending moment M is applied), the beam will deform (fig.8.2.c), so that the 

fibers of the member become curved, and the sections AB and CD will rotate one 

related to the other at angle d. As a result of the deformation, only certain fibers will 

retain their initial length. These fibers are called neutral fibers and form a neutral 

surface. The surface is considered to be plane and is called a neutral plane. When M 

› 0, the upper fibers of the plane compress and the lower fibers extend. The 

intersection line of the neutral plane with a longitudinal vertical plane (x0y), which 

contains the axis of the beam, are called neutral fiber, neutral axis, or medium 

fiber. 

 An arbitrary fiber, MN, located on the y coordinate of the neutral plane, before 

deformation has the length dx = MN = OP = r d.  

 From this relation the rotation of the section is defined: 

 
r

1

dx

d



 . 

 After the beam is deformed, fiber MN = dx, will have the following length: 

 dx + dx = M
`
N

` 
= (r+y)  d, and the elongation will be: dx = y  d. 

 It results that the specific length is: 

 
 

r

y

dr

drdyr

MN

MNNM

ds

ds ''
















 .    (8.1) 

 The normal stress , which occurs in the section, on the ordinate y, (next to 

fiber MN), according to Hooke’s law, will be: 
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r

y
EE   .         (8.2) 

 To obtain the relation between the bending moment and the stresses occurred 

on the surface of the cross section, the equivalence equations are written. In this 

particular case, when all the elemental forces dA are parallel to one another and 

normal on the cross-section surface, these equations are: 

  
)A()A()A(

.MdAy,0dAz,0dA    (8.3) 

 If the expression (9.2) is taken into account, they become: 

  
)A(

2

)A()A(

MdAy
r

E
,0dAzy,0dAy .   (8.4) 

 From the obtained relations, one can note the following: 

  - since: 

    
)A(

0dAy , 

the neutral axis passes through the center of gravity of the cross section, because only 

related to a central axis is the static moment of a surface zero. Thus, the origin of the 

reference system coincides with the center of gravity of the cross section; 

 From: 

   
)A(

0dAzy , 

follows that the axes Oy and Oz must be main axes of inertia of the cross section; 

Starting from 5.4: 

   
)A(

z

2 IdAy , 

the moment of inertia axial to the neutral axis Oz of the entire cross section. 

 The axes (Oy and Oz) of the section which pass through the center of gravity 

and Oy which is the axis of symmetry are main central axes of inertia. If the neutral 

surface is intersected with a normal plane, the bending axis (Oz axis) of the section 

is obtained. 

 Taking the above into consideration, the rotation of the section is defined by 

the following relation: 
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zIE

M

r

1


 .        (8.5) 

 Therefore, the section rotation is equal to curvature (
r

1
) and is directly 

proportional to the bending moment and inversely proportional to the bending 

rigidity (E  I
z
). 

 If in relation (8.5) the relation (8.2) is taken into account, the expression of the 

normal stress becomes: 

 y
I

M

z

 .          (8.6) 

 This is L. M. H. Navier’s formula and shows that the value of the normal 

bending stress is a linear function related to the ordinate of the point, relative to 

the neutral axis. Navier's relation expresses a linear distribution of the stresses: zero 

in the neutral axis and maximum and minimum values in the boundary fibers (fig. 

8.2, c). The maximum stress in the section is: 

 
zz w

M
y

I

M
 maxmax .        (8.7) 

 The geometric size was introduced in formula (8.7) (see 5.7): 

 
maxy

I
w z

z  ,          (8.8) 

which is called modulus of axial strength. 

 Although Navier's equation has been solved and corresponds to the pure 

bending load, it is also used to calculate the normal stresses at the beams subjected to 

simple bending. 

If the bending axis is not the axis of symmetry, then both the maximum 

elongation stress and the maximum compressive stress are determined. 

 
1z

1
W

M
  and 

2z

2
W

M
       (8.9,a) 

 
1

z
1z

y

I
W   and 

2

z
2z

y

I
W        (8.9,b) 

In the above relations wz1 and wz2 are the strength moduli. 
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8.3. Calculation of Bending Strength 

 

 The relations deduced above are used to solve the problems of the strength of 

materials: verification, calculation of maximum applicable load and dimensioning. 

Solving these problems is done by meeting the strength condition max  a. The 

relations for calculating the bending strength are deduced from relation (8.8) and are 

the following: 

 - for verification: 

 a

z

i

w

M
 

max

max ,        (8.10) 

 - for calculating the maximum applicable load: 

 azefcapi wM  ,        (8.11) 

 - for dimensioning: 

 
a

i

necz

M
w



max
 .        (8.12) 

 Relations (8.10), (8.11) and (8.12) apply to the most loaded section (the 

hazardous section). In the case of beams (cantilevers) of constant section, this 

corresponds to the section where the bending moment is maximum at absolute 

value. At the beams (cantilevers) with gradual section variation, a hazardous section 

is determined based on the bending moment diagram, for each segment, for which the 

strength calculation is then performed. 

 

8.4. Rational Shapes of Cross Sections for Bending – S19 

 

 The higher the axial strength modulus w
z
, the better a beam (cantilever) 

withstands the bending load. The value of the axial strength modulus depends not 

only on the size of the section, but also on its shape. The shape of the section is all 
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the more rational as the strength modulus has a higher value for a lower 

material consumption. 

In other words, a section is all the more rational as the ratio between the axial 

strength modulus and the section area is higher. Table 8.1 contains the values of this 

ratio for some habitual shapes of sections.  

 

           Table 8.1 

 

Shape of 

the section 

 
 

  

w
z
 / A 0,125 D 0,167 h  0,26 h  0,3 h 

  

This table shows that the sections of laminated profiles I and U, widely used in 

metallic constructions, are much more rational than the circular and rectangular 

sections. In the case of these profiles, the section is rationally used as most of the 

material is concentrated where the stresses are high. 

These profiles must be acted upon by bending moments in the direction of 

the main axis Oz. 

The circular section has the advantage of withstanding equally well with 

respect to any central axis and is therefore 

used especially for building machine shafts. 

In this case the forces maintain their position 

in space, whereas the shaft rotates, which 

must withstand as well in any position. 

 In the case of materials that withstand 

compression better than elongation (e.g. cast 

iron), those sections that are not symmetrical 

with respect to the bending axis are more rational (e.g. section T, the trapezoidal 

 
Fig. 8.3 
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section fig. 8.3). The beam made of brittle materials must be placed in such a manner 

that the compressive stresses must be higher than the tensile stresses. In this case, 

both the tensile and compressive strength conditions must be met. 

 ;y
I

M
at1

z

i
1    ac2

Z

i
2 y

I

M
  .     (8.14)  

 By drawing the ratio of these two relations the optimal dimensions of the 

section are obtained: 

 
ac

at

2

1

y

y




 .               (8.15) 

 

 Exercise 8.1  Consider the beam in figure 9.4, which can be made in 3 

constructive variants, all of the same weight, and determine the maximum applicable 

load for each variant, when the allowable stress is a = 150 MPa and a = 40 mm. 

 The areas of the sections are equal in the three situations, and the axial strength 

moduli have the following values: 
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 From the strength condition: 
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2

maxi W
8
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
 , 

 
Fig. 8.4 
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results the value of the force for the three constructive variants: 
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a
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  . 

 The section corresponding to the third variant best withstands the bending 

stress, the variant being 3.85 times more resistant than the first variant. Therefore, by 

judiciously choosing the shape of the section, significant material reductions are 

made. 

 Exercise 8.2.  Dimension a cast iron beam of at = 30 MPa and ac = 90 MPa, 

length l = 1300 mm and having a 

T-shaped section, with 
9

b
t  , 

loaded by a force P = 24 kN, 

(fig.8.5). 

Solution: In points 1 and 2 

of the section the maximum stress 

must not be greater than the 

allowable elongation stress and the 

compressive one respectively. 

 at1

z

i
1 y

I

M
  ,  ac2

z

i
2 y

I

M
  . 

 The ordinates y1 and y2 measured from the neutral axis (the axis passing 

through the center of gravity) result from the expressions: 
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Fig.  8.5 
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 Relation 8.15 leads to: 
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 From this relation, the following results: 

 b
2
 - 6 bh + 9h

2
 = 0, with the solution compatible with problem: b = 3h. 

 With this solution, the dimensions of the section, expressed according to the 

thickness t, are the following: 

 b = 9t;  h = 3t;  y1 = t;   y2 = 3t. 

 The moment of inertia of the section is: 
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and the axial strength moduli are: 
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 From the condition of bending strength Mimax = Wz a, the following thickness 

is obtained: 

 mm
M

t
at

nec 25.44
3012

13001012

12
3

3

3
max 










 

  The following values are chosen: t = 45 mm;  b = 405 mm;   h = 135 mm. 

 

8.5. Tangential Stresses in the Cross Sections (Cantilevers) Subjected 

to Simple Bending – S20 

 

 The cross section of a beam (cantilever), subjected to simple bending, is acted 

upon by the following stresses: bending moment and shear force. The simply 

supported beam, loaded by the traverse force P, (fig. 8.6, a), is subjected to simple 

bending. An element of this beam is selected having length dx (fig.8.6, b). Stresses T, 

M and respectively T and M + dM occur in the cross-sections. 
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Fig. 8.6 

 

It is admitted that the section of the beam is symmetrical to the axis Oy (fig. 

8.6 c) and constant throughout its length L. The beam is made of a homogeneous and 

isotropic material that obeys Hooke's law. The shearing force is directed along the Oy 

axis. 

The bending moments M and M + dM will produce normal stresses  and 

respectively  + d  in the two sections, their distribution on the section being given 

by Navier's equation: 

 ,y
I

M

z

i   respectively y
I

dMM
d

z

ii 


  ,   (8.16) 

and is shown in figure (8.6,d). 

 The shearing force T causes tangential stresses. Their distribution in the cross 

section is yet unknown. The tangential tension, in the vicinity of the points on the 

contour must be tangent to the contour. If at one point on the contour the 
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tangential stress  had a random direction (fig. 8.6c), then it would be separated into 

two components: one xt tangent to the contour and another one xr normal to the 

contour. Component xr should correspond, according to the principle of duality of 

the tangential stresses to a stress rx located on the outer surface of the beam and 

oriented along the bar. As the beam is subjected to simple bending and longitudinal 

frictional forces do not act upon the beam, it turns out that the two components rx 

and xr (on the outer surface and in the cross section) are null. Therefore, the 

tangential stress   is equal to component xt ( = nt), which means that on the points 

in the vicinity of the contour there are only tangential stresses tangent to the contour. 

 We consider a line BC parallel to the bending axis Oz (located on its y-

coordinate). We mark the area of the cross section below line BC cu A1. The length 

of segment BC is marked with b. In points B and C the tangential stresses  are 

tangent to the contour and can be decomposed into a component xy perpendicular to 

the bending axis Oz and a component xz parallel to the bending axis. According to 

the D.I. Juravski’s hypothesis, it is admitted that the values of component xy are 

equal in the vicinity of all points on the BC line. 

 We consider a plane parallel to the axis of the beam, which contains the 

segment BC = b. This plane (BCC'B') intersects the element dx after a rectangular 

surface with dimensions b and dx. Both the tangential stresses xy caused by the 

shearing force T, as well as the normal stresses  and +d caused by the bending 

moment M on the left and M+dM on the right, act upon the bottom side of the 

considered plane (below ordinate y). 

The equation of projections of the stresses on the element under the BCCăBă 

plane on axis Ox is the following: 

   

1 1A A

xy 0dxbdAdA)d(   

Taking into account relations (8.16), the equation becomes: 
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The value of the tangential stress is: 

  



1A

i

z

xy dAy
dx

dM

Ib

1
 . 

Considering that T
dx

dM
  is the shearing force in the section and  

1A

zSdAy  is the 

static moment of surface A1, ( below line BC) related to axis Oz, we obtain: 
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z
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Ib

ST
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
  ,       (8.17) 

This relation is known as Juravski’s formula. 

 According to Juravski's formula the value of the tangential stress in a given 

cross-section depends on the value of ratio Sz/b, which means that xy is a function of 

ordinate y. On the lower and upper edge of the section these stresses are null because 

A1 = 0. 

 

8.6. Variation of the Tangential Stresses in Different Cross Sections 

 

 a) The rectangular cross section (fig 8.7). 

 In this case, the width b is constant over the section height. The quantities of 

Juravski's formula have the following values: 
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 By substituting these quantities in relation (8.17), we obtain: 
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where the area of the cross section was noted with A = b h.  
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Fig. 8.7 

 Relation (9.19) shows that the tangential 

stresses vary parabolically over the height of 

the section. The maximum tangential stress is 

reached in the vicinity of the neutral axis, for y = 

0 and has the value: 

 
A2

T3
max  .    (8.20) 

 Thus, the maximum value of the tangential stress, in the case of shearing the 

rectangular section beams, is 50% higher than the value obtained by conventional 

shear calculation. 

 b) The circular cross section. 

  We consider a circular section of diameter d (fig. 8.8). In order to calculate the 

static moment, we consider an area element dA, of width b and height dy, located on 

the ordinate y. 

Width BC of section A1 is: 

 ,sindsin
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2b    and the ordinate is 
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It results that the elementary area is: 
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 The static moment of section A1, below ordinate y will be: 
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 Taking into account that: 
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the value of the tangential stress will be: 

 
Fig. 8.8 
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 The value of the maximum tangential stress is obtained in a similar way as for 

the rectangular section for y = 0 and reaches the value: 
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3

4
 .         (8.22) 

 Relation (8.21) proves that the tangential stresses also vary parabolically as in 

the case of the rectangular section. 

 Exercise 8.6. Draw the stress variation diagrams in the hazardous section for 

the beam in figure 8.9. 

 

Fig. 8.9 

 The geometric properties of the section are: 
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 The stresses corresponding to the fixed end section are the following: 
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and their variation is shown in figure (8.9,b).  
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9. COMPOUND LOADS – S21 

 

9.1. Introductory Notions – S21 

 

 The simple loads acting on the mechanical member (MM) have been studied 

up to this point. In engineering practice, there are frequent cases when two or more 

simple loads are present simultaneously. The simultaneous presence of two or 

more stresses in the cross section of a mechanical member produces a compound 

load. 

In the case of compound loads, each force will cause a stress in the section, 

respectively a strain, which can be calculated with the formulas learned in the chapter 

related to simple loads. However, the problem arises of cumulating these stresses or 

strains and establishing the limit state for these cases. 

 

9.2. Limit State – S21 

 

 Often the limit of proportionality or sometimes that of elasticity and, in some 

cases, the flow limit, are exceeded, producing permanent deformations (non-elastic 

therefore irreversible). This is the situation when one says about the MM that it does 

not endure. The fact that it fails does not imply that the MM fractures, but that 

it exceeds a limit state. 

An MM is said to have reached the limit state when it no longer meets the 

technical conditions imposed by normal operation, i.e. its operation becomes 

impossible. 

The limit states can be classified into two groups: 

I - limit states of total depletion of the load capacity, which can be characterized 

by: 

  a) the fracture of the MM; 
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  b) reaching the flow limit on the entire section of the MM and 

c) the occurrence of the elastic instability phenomenon (buckling). 

II - limit states of functional failure, characterized by: 

a) the occurrence of elastic or non-elastic deformations which exceed the 

allowable values; 

b) the occurrence of inadmissible vibrations. 

The proper functioning of the MM is compromised by the existence of any of 

the above limit states. 

 

9.3. Equivalent Stress – S22 

 

   The verdict given by the engineers that an MM does not endure, means that 

a certain limit state has been exceeded. From here on we will use the notion of limit 

state to refer to the point where a mechanical or elastic property of the material is 

reached when the basic hypothesis of strength of materials are considered achieved, 

namely the relations of the theory of elasticity are applicable. This limits the notion of 

limit state to the linear - elastic domain. 

Five criteria are considered when determining the limit state: 

I. the maximum normal stress; 

II. the maximum specific elongation; 

III. the maximum tangential stress; 

IV. the total specific energy of maximum deformation; 

V. the specific energy of changing the maximum shape. 

These five criteria have proven worthy for two reasons: 

a) The tensile-compressive tests can determine the values of the 

mechanical properties corresponding to the limit state that must not be exceeded; 

b) Between the boundary stress determined by the tensile-compressive 

test (which must not be exceeded) and the five criteria which determine the limit 

state, simple relations can be established. 
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 If we consider the limit of proportionality as a limit state, the other limit state 

criteria can be written according to p
: 
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 The spatial state of stress in a point in the MM can, by hypothesis, be equated 

with a uniaxial state of stress. The equivalence is done by using one criterion of the 

above mentioned five. This can be summarized by the figure below. 

 If the limit state for tension or compression is known, the five traditional 

theories of strength can be asserted, establishing the conditions under which the limit 

state is reached in a point of a spatially loaded mechanical member. The verification 

of the limit state is done by determining a conventional stress, for a critical state of 

stress in a point, based on the accepted strength hypothesis, called equivalent stress, 

which must meet the relation: 

  ech L .                 (9.2) 

 This inequality can also be written as an equality, under limit conditions: 

 


ech
L

c
 ,                     (9.3) 

where, c – is the corresponding safety coefficient. 

 

 

 

 

 
Fig. 9.1 
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9.4. The Traditional Theories of Strength – S23 

 

 Depending on the five parameters chosen for reaching the limit state, there are 

five theories (hypotheses) of strength. 

 

9.4.1 The theory of the maximum normal stress 

  

 It was initially formulated by Galileo Galilei and reformulated by Rankine. 

The limit state is reached in one point of an MM when the maximum 

normal stress in that point becomes equal to the boundary normal stress of the 

simple tensile or compressive state of the material the respective MM is made of. 

This theory can also be expressed through the following relations: 

     Lc Lt1
, 

     Lc Lt2 ,  (9.5) 

     Lc Lt3
, 

which can be represented by a cube 

for the spatial state (fig.9.2, a) or a 

square for the plane state of stress 

(fig.9.2,b). 

 If LcLt   , the origin of the axis system is not in the centroid of the cube (or of 

the square). This theory does not fully correspond to reality because in the three-

dimensional state of compression ( L  321 ), in which the body cannot be 

destroyed, it must result Lc . 

 Also, in case of shear, for which the limit stress is 2/LL   , which 

corresponds to point K, inside the square and not to point B, which is the limit 

according to this theory. 

Due to these inconsistencies, the theory of the maximum normal stress can be 

used with caution only for states of stress where the fracture occurs by tearing (it is a 

 

Fig. 9.2 



Strength of Materials I 

109 
 

 
Fig. 9.3 

theory of tearing). 

For the most unfavorable state of stress in a point on the MM, the equivalent 

stress, according to the theory of the maximum normal stress, is: 

      ech L max ; ;1 2 3 .       (9.6) 

 

 

9.4.2. The theory of the maximum specific elongation 

 

 This theory was issued by Barré de Saint-Venant. According to this theory it is 

considered that the destruction of the mechanical member is caused by the maximum 

specific elongations. In a point of a MM the limit state is reached when the 

maximum specific elongation, from that point, becomes equal to the value of the 

specific limit elongation for simple elongation or compression. 

 
E

L
Lmax


  , or expressed in terms of stresses: 

 Lt321LC )(   , 

 Lt132LC )(   ,      (9.7) 

 Lt213LC )(   . 

 Relations (9.7) express the 

boundary surface which is in this case, 

a spatially inclined parallelepiped 

(fig.9.3, a). For the plane state of stress 

the rhomb in figure (9.3, b) is obtained, 

which results from sectioning the parallelepiped with plane 3  

 Angle  at which the sides of the rhomb in the second theory are inclined, as 

compared to the square representing the first theory is given by relation:  

 ) This theory has almost the same weaknesses as the first one. That is 

why it can be applied, with good results to brittle materials, as a hypothesis of 

tearing. 
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Fig. 9.4 

The equivalent stress, in this case for the spatial state, is expressed by the 

relation: 

  L

213

321

ech
)(

)(
max 




 
















      (9.8) 

 

 

 

 

9.4.3. The theory of the maximum tangential stress 

 

 This theory was formulated by Coulomb and according to it the limit state 

appears through sliding in the plane acted upon by the maximum tangential stress. 

Tresca rephrased the theory, stating that the limit state in one point of a MM is 

reached when the maximum tangential stress becomes equal to the value of the 

tangential stress ( L) from the simple tensile or compressive load. 

This theory can be expressed by: 
2

L
max


  , a condition met by: 

  L1L   ;    L2L   ;    L33   . 
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2





  and 

2

21
3





   we obtain: 

L21L    ; L31L   ;  L32L   . (9.9) 

 Relations (9.9) create, due to the equal sign between stresses, a regular 

hexagonal prism open at the ends. 

The axis of the prism is the trisector 

321    The surface is open at 

both ends because both at triaxial 

compression L321    as 

well as at triaxial elongation 

L321   , the tangential stresses are null (fig.9.4.a) and there are no sidings. 



Strength of Materials I 

111 
 

 
Fig. 9.5 

 According to this hypothesis, in these cases, the limit state is not reached and 

the MM is not destroyed. The conclusion is true only for uniform triaxial 

compression, but does not correspond to the reality of uniform triaxial elongation. 

The plane state, which is a section with plane 03   (fig. 9.4), is represented by 

an irregular hexagon AEFCGH (fig. 9.4, b) and corresponds to theory I for 

021  and differs from it for 021  . In the case of pure shear, when 

,max21   it is represented by point K by coordinates  
2

L
 and .

2

L
  

 This theory has been experimentally verified and it has been proven that it 

corresponds to reality except for the state of stress close to the triaxial elongation, 

when due to the fact that the tangential stresses are low, no sliding occurs. 

Theory III is not perfect either because: 

a) it does not take into account the influence of the normal stress in the 

plane of sliding; 

b) it does not take into account the different strength of the materials to 

elongation and compression; 

c) it neglects the effect of the intermediate stress (only two main stresses 

are taken into account). 

The strength condition for this theory is expressed by the relation:  

   L323121ech )();();(max   . 

 If we take into consideration 321   , the strength condition becomes:  

 L31ech   ,                     (9.10) 

and it is therefore independent of the value of the intermediate normal stress 2. 

 

9.4.4. The theory of the total strain energy  

 

 This theory was formulated by 

Haigh and states that: at one point 

of a MM the limit state is reached 
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Fig. 9.6 

when the specific strain energy becomes equal to the value of the specific strain 

energy corresponding to the simple elongation or compressive load, i.e.: 

 U U L1 1 . 

 Expressing these strain energies according to stresses, the following inequality 

is obtained: 

 





 2
)(2(

2

1 2

L
133221

2

3

2

2

2

1  ,  

or simplifying by (2E) it results:  

 2

L133221

2

3

2

2

2

1 )(2   ,    (9.11) 

relation which forms an ellipsoid. 

 For the plane state of stress, it is represented by an ellipse passing through the 

EFGH points (fig. 9.5). This strength theory is a tearing theory. It is used only for 

states of stress close to the triaxial elongation state: ( 0
3

321 
 

).   

 The equivalent stress in this case is expressed with the relation:  

 L133221

2

3

2

2

2

1ech )(2   .   (9.12) 

 

 

9.4.5. The theory of the shape variation specific energy 

 

 It was formulated by Huber - Hencky - Mises and takes into account only the 

shape variation specific energy. 

 According to this theory, at one point of a MM the 

limit state is reached when the shape variation strain 

energy in that point becomes equal to the shape 

variation specific energy corresponding to the limit 

state for the simple elongation or compressive load. 

 fL1f1 UU  , 

or, expressed according to stresses we obtain:  
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   2

L

2
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21
3

1
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6

1
















, 

and after simplifications, it becomes:  

 2

L133221

2

3

2

2

2

1   .     (9.13) 

 Relation (9.15) represents a cylinder open at both ends, with the bisector 

321    as axis (fig.9.6,a). 

 The normal section at the axis of the cylinder is a circle, and the cross section 

made with plane 3=0, corresponding to the plane state of stress, is an ellipse 

circumscribed to the irregular hexagon of theory III, fig. 9.6b. 

The equivalent stress in this case is expressed by the formula:  

 L133221

2

3

2

2

2

1ech )   .    (9.14) 

 This theory is similar to reality except for the case of the uniform triaxial 

elongation state. It is superior to theory number III because it also takes into account 

the intermediate stress. 

 

9.5. Particularities of the Theories of Strength 

 

9.5.1. Plane state of stress 

 

 Replacing  3 = 0 in the above relations, it results the plane state of stress 

characterized only by the main stresses  1  

and  2 . 

The relations of the equivalent stresses 

become:  

   L21ech ;max)I   ; 

    L1221ech ;max)II   ; 

 L21ech)III   ;  
 

Fig. 9.7 
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 L21

2

2

2

1ech 2)IV   ;  

  L21

2

2

2

1ech)V   .       (9.15) 

 These relations represented the following in figure 9.7:  

  - the square ABCD – according to theory I; 

  - the rhomb LMNP - according to theory II; 

  - the irregular hexagon AEFCGHA - according to theory III; 

  - the ellipse ERFSGTHUE - according to theory IV; 

  - the ellipse EVFCGWHAE - according to theory V. 

 It can be observed from this figure that in the points on the axes, that is, at 

simple elongation or compression, all the strength hypotheses coincide. The interior 

shaded surface represents the plane states  1 2,  which do not exceed the limit state 

according to all three hypotheses, and the outer shaded surface represents the states of 

stress which, according to all hypotheses, lead to exceeding the limit state. The not-

shaded surface represents the undefined area, not established by the different theories 

of strength. 

 

9.5.2. Applying the theories of strength on beams– S23 

 

 In the particular case of the beams, in the sections where there can only be 

normal stresses   x  and tangential stresses 2

xz

2

xy   , the principal stresses are 

obtained with the relation:  

 22

2,1 4
2

1

2



  , 

which replaced in relations (9.17), for  result in the formulas:  

 L

22

ech )4(5,0)I   : 

 L

2222

ech 465,035,04
2

1

2

1
()II 





 





 ;  

 L

22

ech 4)III   ; 

 L

2222

ech 6,2)1(2)IV   ; 
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 L

22

ech 3)V   .               (9.16) 

 

9.6. Calculation of Strength of Beams Subjected to Compound Loads – S24 

 

 A compound load refers to the existence of two or more forces simultaneously 

acting on the beam, cases that are frequently encountered in engineering practice. But 

each force causes a stress, some normal, some tangential. Due to this fact, the 

compound loads can be studied taking into account the stresses that cause them. 

    According to the type of stress produced, the forces that cause the compound 

load are grouped into the following three groups: 

 a) N and M (My and Mz) which cause normal stresses; 

 b) T (Ty and Tz) and Mt which cause tangential stresses; 

 c) N and T or N and Mt, M and Mt, M and Mt, N, M, Mt, which cause both 

normal and tangential stresses. 

 In cases a and b when the stresses have the same direction they are 

algebraically summed up, and when they have different directions, they are 

geometrically summed up. 

In case c, the two types of stresses  and  are not algebraically nor 

geometrically summed up, but only by using one of the theories of strength (the 

corresponding one). 

According to the form of the section, group c of compound load is subdivided, 

for analysis purposes into two subgroups: 

- circular or annular cross section beams, and 

- arbitrary cross section beams. 
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9.7. Calculation of Strength of Circular and Annular Cross Section 

Shafts Subjected to Bending and Torsion – S25 

 

 Among the MMs subjected to a compound load where both normal and 

tangential stresses occur, a very high frequency in the engineering practice is 

observed in the case of shaft, driving axles, screws, and so on. 

The shafts are machine parts that transmit through gears, riggers or couplings, 

torque moments and are subjected to simple bending. The strength of the shafts is 

calculated by taking into account only the moments of bending and torsion, 

neglecting the effect of the shearing force. Due to these moments, the maximum 

normal and tangential stresses that occur in the hazardous cross sections are 

determined with the following relations:  

 
z

i
max

W

M
       and    

p

t
max

W

M
 . 

 Considering that in a circular or annular cross section, pz W2W  , the maximum 

stresses, expressed only according to the axial strength modulus, are:  

 
z

i
max

W

M
        and      

z

t
max

W2

M
 . 

 Since, both at bending and torsion, these stresses reach maximum value in the 

farthest points from the neutral axis (Oz in fig. 9.11), the equivalent stress is 

calculated for these points. Using the theory of strength number III (III, 9.16), the 

following is obtained:  

 
z

ech

2
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2

t

2

2

z

2

t

2

z

2
22

ech
W

M

W

MM

)W2(

M
4

W

M
4 


  . 

 Where, according to theory III, we noted with: 

  2

t

2

iech MMM  , 

a quantity which is called the equivalent bending moment. 
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 The equivalent moment is a conventional bending moment, calculated by 

means of a theory of strength, which equates a compound bending and torsion load, 

only for the circular or annular section shafts, subjected to bending. 

Similarly proceeding with all relations (9.16), the following expressions for the 

equivalent bending moment result:  

  I)      )MMM(5,0M 2

t

2

iiech  , 

  II)    2

tiiech MM65,0M35,0M  , 

  III)   2

t

2

iech MMM  , 

 IV)   2

t

2

iech M65,0MM  , 

 V)    2

t

2

iech M75,0MM  .              (9.23) 

 Using relations (9.23), the value of the equivalent bending moment is obtained. 

It is employed in calculating strength as if the shaft were only subjected to 

bending by a moment having the value Mech. 

 Therefore, the calculation of strength of the circular and annular cross 

section shafts subjected to Mi and Mt will be similar to that presented for bending, 

namely:  

 a) verification problems:  

    a

z

ech
ech

W

M
  ,          (9.24) 

 b) maximum allowable load problems:  

    zaechcap WM   ,            (9.25) 

 c) dimensioning problems:  

   3

a

ech
nec

M32
d

 
    or   3

a

4

ech
nec

)k1(

M32
D

 
 .      (9.26) 

 

 Exercise 9.2 Calculate the dimensions of the shaft in figure (9.8, a), made from 

OL 50 with a = 80 MPa knowing that it has an annular cross section with d = 0.8 D. 
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Fig. 9.8 

Solution: Forces P and Q at the end of the two wheels are reduced in the 

centers of the respective wheels, resulting in the loading diagram in figure (9.12, b), 

whereby the shaft is subjected to bending by forces P and Q (the shear load is 

neglected) and to torsion by moments M M P Rt t, 3 1   and M Q Rt4 2  . 

The equilibrium equation M tx  0  help us determine load Q:  

 kN
R

MRP
Q t 4

4.0

4.22.020

2

1 





 . 

 The torsion moments are:  

 kNmMM tt 4.231  , 

kNmRPMM tt 6.12.0204.2143  , 

 M t4 2 0  , 

and the diagram of the torsion 

moments is shown in figure (9.12,c). 

 The reactions in the bearings 

are:  

 kNV 18
2.1

4.04120
1 


  and  

 kNV 6
2.1

8.042.020
2 


 , 

while the bending moments are: 

kNmVM 6.32.0182.013   and  

kNmVM 4.24.064.024  . 

 The diagram of the bending 

moments is shown in figure (9.12,d). 

 The hazardous section, where 

the strength is calculated, is section 

(3) where Mi and Mt have maximum values (in absolute value) and for this section 

the equivalent moment is:  

 kNmMMM tiVech 157.44.275.06.375.0 2222  . 
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 The required diameter determined by relation 9.26 for the annular section is: 

 mm
k

M
D

a

ech
nec 42.96

)8,01(80

10157.432

)1(

32
3

4

6

3
4











. 

 We take: D = 95 mm and d = 76 mm. 

 Since a lower value than the one calculated was adopted, the verification will 

be mandatorily done to check to see if it has been exceeded by more than 5% a. 

 
   

MPaMPa
kD

M
a

efc

ech 8405.165.83
8.0195

10157.432

1

32
43

6

43max 








 


 .  (9.33) 

 The order of operations in the calculation of strength of arbitrary cross 

section beams is as follows:  

a) The stress diagrams are drawn, the hazardous sections are highlighted (where the 

stresses reach maximum) and the values of the stresses in each hazardous section are 

noted. When calculating the maximum allowable load, it is recommended that instead 

of values to write the expressions of the stresses. 

b) The strength calculation required by the respective problem is performed, namely: 

- the beam verification calculation: consists of calculating and plotting the stress 

variation diagram for each stress acting upon the hazardous section. For the points of 

the section with maximum stresses, the equivalent stresses are calculated and 

compared to the allowable stress; 

- the allowable load: In this case the loads and the stresses must be expressed 

according to the unknown load P, then the allowable load P is determined from this 

condition max  a . This calculation is possible only if the expressions of the stress 

can be expressed according to a single parameter and namely force P. 

 The dimensioning of the beam subjected to compound load is actually a 

pre-dimensioning where it is considered: 

  ap a ( , ... , )0 5 0 9  ,               (9.34) 

and the dimensions of the section are calculated taking into account only the 

predominant stress. The dimensions are set and then the verification is done by taking 

into account the stresses caused by all the loads in the hazardous section. 
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Fig. 9.3 

 Exercise 9.3  Verify the beam in figure 

9.13 knowing that it is made of OL 70 with 

a =180 MPa. 

 Solution: The stress diagrams are 

shown below the beam and it is observed that 

the hazardous section is the built-in section 

(section B). 

 The geometric quantities required are:  

3
33

2

0 212
12

84.56.96
)( cmAyII iizoiz 


 , 

 0SS 41  , 

 3

32 12.214.48.06 cmSS  ,  

 3

2 92.2526.04 cmSSG  ,  

 The stresses corresponding to the loads in the hazardous section are:  

 - for bending: 

 MPa
I

yM

z

ii 9.135
10212

)48(106
4

6

41 






  , 

 MPa
I

yM

t

i 2.113
10212

)40(106
4

6

3

32 






  , 

 - for shearing: 

  xy xy1 4 0   

 MPa
Ib

ST

zt

txytxy 985.3
1021260

1012.211024
4

33

2

2
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







  , 
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ST
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102126

1012.211024
4

33

2

2
32 


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MPa
Ib

ST
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102126

1092.251024
4

33












 , 

 The stress variation diagrams on the hazardous section are shown in figure 9.4. 
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Fig. 9.4 

 

 Calculating the equivalent stresses by means of one of the theories of strength 

(5
th

 theory) and comparing them with the allowable stress, the following are obtained:  

    aechech MPa   9.13509.1353 22

1

2

1
41

, 

   atechech MPa
tt

  41.113)985.3(32.1133 222

2

2

2
32

 

   aiechech MPa
ii

  7.151)85.39(32.1133 222

2

2

2
32

 

   aGechG MPa   71.84)91.48(33  

 The beam endures. 
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